# -*- coding: utf-8 -*- """ Spyder Editor This is a temporary script file. """ from transformers import AutoTokenizer, AutoModelForSequenceClassification, pipeline import torch tokenizer = AutoTokenizer.from_pretrained("nomsgadded/opt_RestaurantReview") model = AutoModelForSequenceClassification.from_pretrained("nomsgadded/opt_RestaurantReview", num_labels=9) prefix = "##Rating: " text1 = "Bad" text2 = "It was really nice to dine there, however the waiter is very mean." text3 = "Nice" def inference(text): text = prefix + text inputs = tokenizer(text, return_tensors="pt") classifier = pipeline("text-classification", model=model, tokenizer=tokenizer) with torch.no_grad(): logits = model(**inputs).logits predicted_class_id = logits.argmax().item() print(predicted_class_id) inference(text1) inference(text2) inference(text3)