nomsgadded
commited on
Commit
•
b0143d9
1
Parent(s):
69f9adf
Upload Inference_Restaurant_Review.py
Browse files
Inference_Restaurant_Review.py
ADDED
@@ -0,0 +1,32 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# -*- coding: utf-8 -*-
|
2 |
+
"""
|
3 |
+
Spyder Editor
|
4 |
+
|
5 |
+
This is a temporary script file.
|
6 |
+
"""
|
7 |
+
|
8 |
+
from transformers import AutoTokenizer, AutoModelForSequenceClassification, pipeline
|
9 |
+
import torch
|
10 |
+
|
11 |
+
tokenizer = AutoTokenizer.from_pretrained("nomsgadded/opt_RestaurantReview")
|
12 |
+
|
13 |
+
model = AutoModelForSequenceClassification.from_pretrained("nomsgadded/opt_RestaurantReview", num_labels=9)
|
14 |
+
|
15 |
+
prefix = "##Rating: "
|
16 |
+
|
17 |
+
text1 = "Bad"
|
18 |
+
text2 = "It was really nice to dine there, however the waiter is very mean."
|
19 |
+
text3 = "Nice"
|
20 |
+
|
21 |
+
def inference(text):
|
22 |
+
text = prefix + text
|
23 |
+
inputs = tokenizer(text, return_tensors="pt")
|
24 |
+
classifier = pipeline("text-classification", model=model, tokenizer=tokenizer)
|
25 |
+
with torch.no_grad():
|
26 |
+
logits = model(**inputs).logits
|
27 |
+
predicted_class_id = logits.argmax().item()
|
28 |
+
print(predicted_class_id)
|
29 |
+
|
30 |
+
inference(text1)
|
31 |
+
inference(text2)
|
32 |
+
inference(text3)
|