---
license: llama2
library_name: peft
tags:
- axolotl
- generated_from_trainer
base_model: codellama/CodeLlama-7b-hf
model-index:
- name: modeltest1
results: []
---
[](https://github.com/OpenAccess-AI-Collective/axolotl)
See axolotl config
axolotl version: `0.4.0`
```yaml
base_model: codellama/CodeLlama-7b-hf
model_type: LlamaForCausalLM
tokenizer_type: CodeLlamaTokenizer
is_llama_derived_model: true
hub_model_id: noeloco/modeltest1
load_in_8bit: false
load_in_4bit: true
strict: false
datasets:
- path: /tmp/fizzbuzz-ft/datasets
data_files: /tmp/fizzbuzz-ft/datasets/training-set-alpaca.json
type: alpaca
ds_type: json
hf_use_auth_token: true
push_dataset_to_hub: noeloco
val_set_size: 0.05
output_dir: ./lora-out
chat_template: chatml
sequence_len: 2048
sample_packing: false
pad_to_sequence_len: true
adapter: qlora
lora_model_dir:
lora_r: 16
lora_alpha: 8
lora_dropout: 0.05
lora_target_linear: true
lora_fan_in_fan_out:
wandb_project: runpod1
wandb_entity:
wandb_watch:
wandb_name:
wandb_log_model:
gradient_accumulation_steps: 1
micro_batch_size: 2
num_epochs: 3
optimizer: paged_adamw_32bit
lr_scheduler: cosine
learning_rate: 0.0002
train_on_inputs: false
group_by_length: false
bf16: true
fp16: false
tf32: false
gradient_checkpointing: true
early_stopping_patience:
resume_from_checkpoint:
local_rank:
logging_steps: 1
xformers_attention:
flash_attention: true
warmup_steps: 10
evals_per_epoch: 4
saves_per_epoch: 1
debug: true
deepspeed:
weight_decay: 0.0
fsdp:
fsdp_config:
special_tokens:
bos_token: ""
eos_token: ""
unk_token: ""
```
# modeltest1
This model is a fine-tuned version of [codellama/CodeLlama-7b-hf](https://huggingface.co/codellama/CodeLlama-7b-hf) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.0295
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0002
- train_batch_size: 2
- eval_batch_size: 2
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 10
- num_epochs: 3
### Training results
| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:-----:|:----:|:---------------:|
| 2.0177 | 0.01 | 1 | 2.5549 |
| 0.603 | 0.26 | 18 | 0.8667 |
| 0.3026 | 0.51 | 36 | 0.2340 |
| 0.0977 | 0.77 | 54 | 0.1274 |
| 0.1101 | 1.03 | 72 | 0.1098 |
| 0.0503 | 1.29 | 90 | 0.0469 |
| 0.0753 | 1.54 | 108 | 0.0516 |
| 0.2285 | 1.8 | 126 | 0.0192 |
| 0.0647 | 2.06 | 144 | 0.0386 |
| 0.0494 | 2.31 | 162 | 0.0334 |
| 0.0552 | 2.57 | 180 | 0.0293 |
| 0.0888 | 2.83 | 198 | 0.0295 |
### Framework versions
- PEFT 0.10.1.dev0
- Transformers 4.40.0.dev0
- Pytorch 2.1.2+cu118
- Datasets 2.15.0
- Tokenizers 0.15.0