--- base_model: - llava-hf/llava-onevision-qwen2-7b-ov-hf --- ## Creation ```python from transformers import AutoProcessor, LlavaOnevisionForConditionalGeneration from llmcompressor.modifiers.quantization import QuantizationModifier from llmcompressor.transformers import oneshot, wrap_hf_model_class MODEL_ID = "llava-hf/llava-onevision-qwen2-7b-ov-hf" # Load model. model_class = wrap_hf_model_class(LlavaOnevisionForConditionalGeneration) model = model_class.from_pretrained(MODEL_ID, device_map="auto", torch_dtype="auto") processor = AutoProcessor.from_pretrained(MODEL_ID) # Configure the quantization algorithm and scheme. # In this case, we: # * quantize the weights to fp8 with per channel via ptq # * quantize the activations to fp8 with dynamic per token recipe = QuantizationModifier( targets="Linear", scheme="FP8_DYNAMIC", ignore=["re:.*lm_head", "re:multi_modal_projector.*", "re:vision_tower.*"], ) # Apply quantization and save to disk in compressed-tensors format. SAVE_DIR = MODEL_ID.split("/")[1] + "-FP8-dynamic" oneshot(model=model, recipe=recipe, output_dir=SAVE_DIR) processor.save_pretrained(SAVE_DIR) # Confirm generations of the quantized model look sane. print("========== SAMPLE GENERATION ==============") input_ids = processor(text="Hello my name is", return_tensors="pt").input_ids.to("cuda") output = model.generate(input_ids, max_new_tokens=20) print(processor.decode(output[0])) print("==========================================") ```