Update README.md
Browse files
README.md
CHANGED
@@ -1,3 +1,196 @@
|
|
1 |
-
---
|
2 |
-
|
3 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
language:
|
3 |
+
- en
|
4 |
+
pipeline_tag: text-generation
|
5 |
+
license: apache-2.0
|
6 |
+
---
|
7 |
+
|
8 |
+
# SmolLM-135M-Instruct-quantized.w4a16
|
9 |
+
|
10 |
+
## Model Overview
|
11 |
+
- **Model Architecture:** SmolLM-135M-Instruct
|
12 |
+
- **Input:** Text
|
13 |
+
- **Output:** Text
|
14 |
+
- **Model Optimizations:**
|
15 |
+
- **Weight quantization:** INT4
|
16 |
+
- **Intended Use Cases:** Intended for commercial and research use in English. Similarly to [SmolLM-135M-Instruct](https://huggingface.co/HuggingFaceTB/SmolLM-135M), this models is intended for assistant-like chat.
|
17 |
+
- **Out-of-scope:** Use in any manner that violates applicable laws or regulations (including trade compliance laws). Use in languages other than English.
|
18 |
+
- **Release Date:** 8/23/2024
|
19 |
+
- **Version:** 1.0
|
20 |
+
- **License(s)**: [Apache-2.0](https://www.apache.org/licenses/LICENSE-2.0)
|
21 |
+
- **Model Developers:** Neural Magic
|
22 |
+
|
23 |
+
Quantized version of [SmolLM-135M-Instruct](https://huggingface.co/HuggingFaceTB/SmolLM-135M).
|
24 |
+
It achieves an average score of 31.91 on the [OpenLLM](https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard) benchmark (version 1), whereas the unquantized model achieves 31.55.
|
25 |
+
|
26 |
+
### Model Optimizations
|
27 |
+
|
28 |
+
This model was obtained by quantizing the weights of [SmolLM-135M-Instruct](https://huggingface.co/HuggingFaceTB/SmolLM-135M) to INT4 data type.
|
29 |
+
This optimization reduces the number of bits per parameter from 16 to 4, reducing the disk size and GPU memory requirements by approximately 75%.
|
30 |
+
|
31 |
+
Only the weights of the linear operators within transformers blocks are quantized. Symmetric group-wise quantization is applied, in which a linear scaling per group maps the INT4 and floating point representations of the quantized weights.
|
32 |
+
The [GPTQ](https://arxiv.org/abs/2210.17323) algorithm is applied for quantization, as implemented in the [llm-compressor](https://github.com/vllm-project/llm-compressor) library. Quantization is performed with 10% damping factor, group-size as 64 and 512 sequences sampled from [LLM Compression Calibration](https://huggingface.co/datasets/neuralmagic/LLM_compression_calibration).
|
33 |
+
|
34 |
+
## Creation
|
35 |
+
|
36 |
+
This model was created by using the [llm-compressor](https://github.com/vllm-project/llm-compressor) library as presented in the code snipet below.
|
37 |
+
|
38 |
+
```python
|
39 |
+
from transformers import AutoTokenizer
|
40 |
+
from llmcompressor.transformers import SparseAutoModelForCausalLM, oneshot
|
41 |
+
from llmcompressor.modifiers.quantization import GPTQModifier
|
42 |
+
from compressed_tensors.quantization import QuantizationArgs, QuantizationType, QuantizationStrategy
|
43 |
+
from datasets import load_dataset
|
44 |
+
import random
|
45 |
+
|
46 |
+
model_id = "HuggingFaceTB/SmolLM-135M-Instruct"
|
47 |
+
|
48 |
+
|
49 |
+
num_samples = 512
|
50 |
+
max_seq_len = 4096
|
51 |
+
|
52 |
+
tokenizer = AutoTokenizer.from_pretrained(model_id)
|
53 |
+
|
54 |
+
preprocess_fn = lambda example: {"text": "Below is an instruction that describes a task. Write a response that appropriately completes the request.\n\n{text}".format_map(example)}
|
55 |
+
|
56 |
+
dataset_name = "neuralmagic/LLM_compression_calibration"
|
57 |
+
dataset = load_dataset(dataset_name, split="train")
|
58 |
+
ds = dataset.shuffle().select(range(num_samples))
|
59 |
+
ds = ds.map(preprocess_fn)
|
60 |
+
|
61 |
+
examples = [
|
62 |
+
tokenizer(
|
63 |
+
example["text"], padding=False, max_length=max_seq_len, truncation=True,
|
64 |
+
) for example in ds
|
65 |
+
]
|
66 |
+
|
67 |
+
# recipe = "w4a16_nohead_recipe.yaml"
|
68 |
+
recipe = GPTQModifier(
|
69 |
+
targets="Linear",
|
70 |
+
scheme="W4A16",
|
71 |
+
ignore=["lm_head"],
|
72 |
+
dampening_frac=0.1,
|
73 |
+
)
|
74 |
+
|
75 |
+
|
76 |
+
model = SparseAutoModelForCausalLM.from_pretrained(
|
77 |
+
model_id,
|
78 |
+
device_map="auto",
|
79 |
+
trust_remote_code=True
|
80 |
+
)
|
81 |
+
|
82 |
+
print(model)
|
83 |
+
|
84 |
+
oneshot(
|
85 |
+
model=model,
|
86 |
+
dataset=ds,
|
87 |
+
recipe=recipe,
|
88 |
+
max_seq_length=max_seq_len,
|
89 |
+
num_calibration_samples=num_samples,
|
90 |
+
oneshot_device="cuda:1,2,3",
|
91 |
+
)
|
92 |
+
|
93 |
+
model_name = model_id.split("/")[-1]
|
94 |
+
|
95 |
+
model.save_pretrained(f"{model_name}-quantized.w4a16")
|
96 |
+
tokenizer.save_pretrained(f"{model_name}-quantized.w4a16")
|
97 |
+
|
98 |
+
```
|
99 |
+
|
100 |
+
|
101 |
+
## Evaluation
|
102 |
+
|
103 |
+
The model was evaluated on the [OpenLLM](https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard) leaderboard tasks (version 1) with the [lm-evaluation-harness](https://github.com/EleutherAI/lm-evaluation-harness/tree/383bbd54bc621086e05aa1b030d8d4d5635b25e6) (commit 383bbd54bc621086e05aa1b030d8d4d5635b25e6) and the [sparseML](https://github.com/neuralmagic/sparseml) engine, using the following command:
|
104 |
+
```
|
105 |
+
lm_eval \
|
106 |
+
--model sparseml \
|
107 |
+
--model_args pretrained=nm-testing/SmolLM-1.7B-Instruct-quantized.w4a16,dtype=bfloat16,max_legth=2048,add_bos_token=True,parallelize=True \
|
108 |
+
--tasks openllm \
|
109 |
+
--batch_size auto
|
110 |
+
```
|
111 |
+
|
112 |
+
### Accuracy
|
113 |
+
|
114 |
+
#### Open LLM Leaderboard evaluation scores
|
115 |
+
<table>
|
116 |
+
<tr>
|
117 |
+
<td><strong>Benchmark</strong>
|
118 |
+
</td>
|
119 |
+
<td><strong>SmolLM-135M-Instruct </strong>
|
120 |
+
</td>
|
121 |
+
<td><strong>SmolLM-135M-Instruct-quantized.w4a16(this model)</strong>
|
122 |
+
</td>
|
123 |
+
<td><strong>Recovery</strong>
|
124 |
+
</td>
|
125 |
+
</tr>
|
126 |
+
<tr>
|
127 |
+
<td>MMLU (5-shot)
|
128 |
+
</td>
|
129 |
+
<td>26.220
|
130 |
+
</td>
|
131 |
+
<td>25.202
|
132 |
+
</td>
|
133 |
+
<td>96.12%
|
134 |
+
</td>
|
135 |
+
</tr>
|
136 |
+
<tr>
|
137 |
+
<td>ARC Challenge (25-shot)
|
138 |
+
</td>
|
139 |
+
<td>29.948
|
140 |
+
</td>
|
141 |
+
<td>30.034
|
142 |
+
</td>
|
143 |
+
<td>100.29%
|
144 |
+
</td>
|
145 |
+
</tr>
|
146 |
+
<tr>
|
147 |
+
<td>GSM-8K (5-shot, strict-match)
|
148 |
+
</td>
|
149 |
+
<td>1.289
|
150 |
+
</td>
|
151 |
+
<td>1.971
|
152 |
+
</td>
|
153 |
+
<td>152.91%
|
154 |
+
</td>
|
155 |
+
</tr>
|
156 |
+
<tr>
|
157 |
+
<td>Hellaswag (10-shot)
|
158 |
+
</td>
|
159 |
+
<td>41.41
|
160 |
+
</td>
|
161 |
+
<td>40.81
|
162 |
+
</td>
|
163 |
+
<td>98.55%
|
164 |
+
</td>
|
165 |
+
</tr>
|
166 |
+
<tr>
|
167 |
+
<td>Winogrande (5-shot)
|
168 |
+
</td>
|
169 |
+
<td>50.039
|
170 |
+
</td>
|
171 |
+
<td>53.591
|
172 |
+
</td>
|
173 |
+
<td>107.10%
|
174 |
+
</td>
|
175 |
+
</tr>
|
176 |
+
<tr>
|
177 |
+
<td>TruthfulQA (0-shot)
|
178 |
+
</td>
|
179 |
+
<td>40.38
|
180 |
+
</td>
|
181 |
+
<td>39.87
|
182 |
+
</td>
|
183 |
+
<td>98.74%
|
184 |
+
</td>
|
185 |
+
</tr>
|
186 |
+
<tr>
|
187 |
+
<td><strong>Average</strong>
|
188 |
+
</td>
|
189 |
+
<td><strong>31.55</strong>
|
190 |
+
</td>
|
191 |
+
<td><strong>31.91</strong>
|
192 |
+
</td>
|
193 |
+
<td><strong>101.16%</strong>
|
194 |
+
</td>
|
195 |
+
</tr>
|
196 |
+
</table>
|