--- language: - en pipeline_tag: text-generation license: apache-2.0 --- # SmolLM-135M-Instruct-quantized.w4a16 ## Model Overview - **Model Architecture:** SmolLM-135M-Instruct - **Input:** Text - **Output:** Text - **Model Optimizations:** - **Weight quantization:** INT4 - **Intended Use Cases:** Intended for commercial and research use in English. Similarly to [SmolLM-135M-Instruct](https://huggingface.co/HuggingFaceTB/SmolLM-135M), this models is intended for assistant-like chat. - **Out-of-scope:** Use in any manner that violates applicable laws or regulations (including trade compliance laws). Use in languages other than English. - **Release Date:** 8/23/2024 - **Version:** 1.0 - **License(s)**: [Apache-2.0](https://www.apache.org/licenses/LICENSE-2.0) - **Model Developers:** Neural Magic Quantized version of [SmolLM-135M-Instruct](https://huggingface.co/HuggingFaceTB/SmolLM-135M). It achieves an average score of 31.91 on the [OpenLLM](https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard) benchmark (version 1), whereas the unquantized model achieves 31.55. ### Model Optimizations This model was obtained by quantizing the weights of [SmolLM-135M-Instruct](https://huggingface.co/HuggingFaceTB/SmolLM-135M) to INT4 data type. This optimization reduces the number of bits per parameter from 16 to 4, reducing the disk size and GPU memory requirements by approximately 75%. Only the weights of the linear operators within transformers blocks are quantized. Symmetric group-wise quantization is applied, in which a linear scaling per group maps the INT4 and floating point representations of the quantized weights. The [GPTQ](https://arxiv.org/abs/2210.17323) algorithm is applied for quantization, as implemented in the [llm-compressor](https://github.com/vllm-project/llm-compressor) library. Quantization is performed with 10% damping factor, group-size as 64 and 512 sequences sampled from [LLM Compression Calibration](https://huggingface.co/datasets/neuralmagic/LLM_compression_calibration). ## Creation This model was created by using the [llm-compressor](https://github.com/vllm-project/llm-compressor) library as presented in the code snipet below. ```python from transformers import AutoTokenizer from llmcompressor.transformers import SparseAutoModelForCausalLM, oneshot from llmcompressor.modifiers.quantization import GPTQModifier from compressed_tensors.quantization import QuantizationArgs, QuantizationType, QuantizationStrategy from datasets import load_dataset import random model_id = "HuggingFaceTB/SmolLM-135M-Instruct" num_samples = 512 max_seq_len = 4096 tokenizer = AutoTokenizer.from_pretrained(model_id) preprocess_fn = lambda example: {"text": "Below is an instruction that describes a task. Write a response that appropriately completes the request.\n\n{text}".format_map(example)} dataset_name = "neuralmagic/LLM_compression_calibration" dataset = load_dataset(dataset_name, split="train") ds = dataset.shuffle().select(range(num_samples)) ds = ds.map(preprocess_fn) examples = [ tokenizer( example["text"], padding=False, max_length=max_seq_len, truncation=True, ) for example in ds ] # recipe = "w4a16_nohead_recipe.yaml" recipe = GPTQModifier( targets="Linear", scheme="W4A16", ignore=["lm_head"], dampening_frac=0.1, ) model = SparseAutoModelForCausalLM.from_pretrained( model_id, device_map="auto", trust_remote_code=True ) print(model) oneshot( model=model, dataset=ds, recipe=recipe, max_seq_length=max_seq_len, num_calibration_samples=num_samples, oneshot_device="cuda:1,2,3", ) model_name = model_id.split("/")[-1] model.save_pretrained(f"{model_name}-quantized.w4a16") tokenizer.save_pretrained(f"{model_name}-quantized.w4a16") ``` ## Evaluation The model was evaluated on the [OpenLLM](https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard) leaderboard tasks (version 1) with the [lm-evaluation-harness](https://github.com/EleutherAI/lm-evaluation-harness/tree/383bbd54bc621086e05aa1b030d8d4d5635b25e6) (commit 383bbd54bc621086e05aa1b030d8d4d5635b25e6) and the [sparseML](https://github.com/neuralmagic/sparseml) engine, using the following command: ``` lm_eval \ --model sparseml \ --model_args pretrained=nm-testing/SmolLM-1.7B-Instruct-quantized.w4a16,dtype=bfloat16,max_legth=2048,add_bos_token=True,parallelize=True \ --tasks openllm \ --batch_size auto ``` ### Accuracy #### Open LLM Leaderboard evaluation scores
Benchmark SmolLM-135M-Instruct SmolLM-135M-Instruct-quantized.w4a16(this model) Recovery
MMLU (5-shot) 26.220 25.202 96.12%
ARC Challenge (25-shot) 29.948 30.034 100.29%
GSM-8K (5-shot, strict-match) 1.289 1.971 152.91%
Hellaswag (10-shot) 41.41 40.81 98.55%
Winogrande (5-shot) 50.039 53.591 107.10%
TruthfulQA (0-shot) 40.38 39.87 98.74%
Average 31.55 31.91 101.16%