File size: 1,666 Bytes
af5b69a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0e71845
 
af5b69a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0e71845
af5b69a
 
 
 
 
0e71845
af5b69a
 
 
 
 
0e71845
 
 
 
 
af5b69a
 
 
 
0e71845
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
---
base_model: airesearch/wangchanberta-base-att-spm-uncased
tags:
- generated_from_trainer
metrics:
- accuracy
model-index:
- name: aspect-finnlp-th
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# aspect-finnlp-th

This model is a fine-tuned version of [airesearch/wangchanberta-base-att-spm-uncased](https://huggingface.co/airesearch/wangchanberta-base-att-spm-uncased) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.8123
- Accuracy: 0.7762

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 3e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 5

### Training results

| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:--------:|
| 1.2935        | 1.0   | 512  | 0.9896          | 0.6811   |
| 0.9114        | 2.0   | 1024 | 0.8804          | 0.7221   |
| 0.64          | 3.0   | 1536 | 0.8094          | 0.7546   |
| 0.4395        | 4.0   | 2048 | 0.8038          | 0.7705   |
| 0.3559        | 5.0   | 2560 | 0.8123          | 0.7762   |


### Framework versions

- Transformers 4.34.1
- Pytorch 2.1.0+cu118
- Datasets 2.14.6
- Tokenizers 0.14.1