Upload README.md
Browse files
README.md
CHANGED
@@ -29,6 +29,17 @@ It was a proof of concept for merging LLMs trained in other languages, and paid
|
|
29 |
|
30 |
As far as I know, Swallow is the full set Llama 2 model(7B, 13B, 70B) that can output the most beautiful Japanese. Therefore, I used it as the base model for merging this time. Thank you for their wonderful work.
|
31 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
32 |
## Prompt template: Swallow (Alpaca format)
|
33 |
|
34 |
```
|
@@ -40,6 +51,78 @@ As far as I know, Swallow is the full set Llama 2 model(7B, 13B, 70B) that can o
|
|
40 |
### 応答:
|
41 |
```
|
42 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
43 |
## Merge Details
|
44 |
### Merge Method
|
45 |
|
|
|
29 |
|
30 |
As far as I know, Swallow is the full set Llama 2 model(7B, 13B, 70B) that can output the most beautiful Japanese. Therefore, I used it as the base model for merging this time. Thank you for their wonderful work.
|
31 |
|
32 |
+
## Test environment
|
33 |
+
|
34 |
+
This model was tested using [text-generation-webui](https://github.com/oobabooga/text-generation-webui/tree/main). I use preset `simple-1` for Generation.
|
35 |
+
|
36 |
+
Users reported that setting **repetition_penalty** is important to prevent repeated output. If you run into any issues, be sure to check your settings.
|
37 |
+
|
38 |
+
- temperature: 0.7
|
39 |
+
- top_p: 0.9
|
40 |
+
- **repetition_penalty: 1.15**
|
41 |
+
- top_k: 20
|
42 |
+
|
43 |
## Prompt template: Swallow (Alpaca format)
|
44 |
|
45 |
```
|
|
|
51 |
### 応答:
|
52 |
```
|
53 |
|
54 |
+
## Use the instruct model
|
55 |
+
|
56 |
+
```
|
57 |
+
import torch
|
58 |
+
from transformers import AutoTokenizer, AutoModelForCausalLM
|
59 |
+
|
60 |
+
model_name = "nitky/Superswallow-7b-v0.1"
|
61 |
+
|
62 |
+
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
63 |
+
model = AutoModelForCausalLM.from_pretrained(model_name, torch_dtype=torch.bfloat16, low_cpu_mem_usage=True, device_map="auto")
|
64 |
+
|
65 |
+
|
66 |
+
PROMPT_DICT = {
|
67 |
+
"prompt_input": (
|
68 |
+
"以下に、あるタスクを説明する指示があり、それに付随する入力が更なる文脈を提供しています。"
|
69 |
+
"リクエストを適切に完了するための回答を記述してください。\n\n"
|
70 |
+
"### 指示:\n{instruction}\n\n### 入力:\n{input}\n\n### 応答:"
|
71 |
+
|
72 |
+
),
|
73 |
+
"prompt_no_input": (
|
74 |
+
"以下に、あるタスクを説明する指示があります。"
|
75 |
+
"リクエストを適切に完了するための回答を記述してください。\n\n"
|
76 |
+
"### 指示:\n{instruction}\n\n### 応答:"
|
77 |
+
),
|
78 |
+
}
|
79 |
+
|
80 |
+
def create_prompt(instruction, input=None):
|
81 |
+
"""
|
82 |
+
Generates a prompt based on the given instruction and an optional input.
|
83 |
+
If input is provided, it uses the 'prompt_input' template from PROMPT_DICT.
|
84 |
+
If no input is provided, it uses the 'prompt_no_input' template.
|
85 |
+
|
86 |
+
Args:
|
87 |
+
instruction (str): The instruction describing the task.
|
88 |
+
input (str, optional): Additional input providing context for the task. Default is None.
|
89 |
+
|
90 |
+
Returns:
|
91 |
+
str: The generated prompt.
|
92 |
+
"""
|
93 |
+
if input:
|
94 |
+
# Use the 'prompt_input' template when additional input is provided
|
95 |
+
return PROMPT_DICT["prompt_input"].format(instruction=instruction, input=input)
|
96 |
+
else:
|
97 |
+
# Use the 'prompt_no_input' template when no additional input is provided
|
98 |
+
return PROMPT_DICT["prompt_no_input"].format(instruction=instruction)
|
99 |
+
|
100 |
+
# Example usage
|
101 |
+
instruction_example = "以下のトピックに関する簡潔な情報を提供してください。"
|
102 |
+
input_example = "東京工業大学の主なキャンパスの一覧を、リスト形式で教えてください"
|
103 |
+
prompt = create_prompt(instruction_example, input_example)
|
104 |
+
|
105 |
+
input_ids = tokenizer.encode(
|
106 |
+
prompt,
|
107 |
+
add_special_tokens=False,
|
108 |
+
return_tensors="pt"
|
109 |
+
)
|
110 |
+
|
111 |
+
tokens = model.generate(
|
112 |
+
input_ids.to(device=model.device),
|
113 |
+
max_new_tokens=200,
|
114 |
+
temperature=0.7,
|
115 |
+
top_p=0.9,
|
116 |
+
repetition_penalty=1.15,
|
117 |
+
top_k=20,
|
118 |
+
do_sample=True,
|
119 |
+
)
|
120 |
+
|
121 |
+
out = tokenizer.decode(tokens[0], skip_special_tokens=True)
|
122 |
+
print(out)
|
123 |
+
|
124 |
+
```
|
125 |
+
|
126 |
## Merge Details
|
127 |
### Merge Method
|
128 |
|