nikitastheo commited on
Commit
2723e7c
1 Parent(s): 772ccc9
Files changed (4) hide show
  1. config.json +27 -0
  2. configuration_ltgbert.py +107 -0
  3. modeling_ltgbert.py +816 -0
  4. pytorch_model.bin +3 -0
config.json ADDED
@@ -0,0 +1,27 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "./models/ltg_bert_joint_50M_50M_nucleus_1/checkpoint/",
3
+ "architectures": [
4
+ "LtgBertForMaskedLM"
5
+ ],
6
+ "attention_probs_dropout_prob": 0.1,
7
+ "auto_map": {
8
+ "AutoConfig": "configuration_ltgbert.LtgBertConfig",
9
+ "AutoModelForMaskedLM": "modeling_ltgbert.LtgBertForMaskedLM",
10
+ "AutoModelForSequenceClassification": "babylm/ltgbert-100m-2024--modeling_ltgbert.LtgBertForSequenceClassification"
11
+ },
12
+ "classifier_dropout": 0.2,
13
+ "hidden_dropout_prob": 0.1,
14
+ "hidden_size": 768,
15
+ "intermediate_size": 2048,
16
+ "layer_norm_eps": 1e-07,
17
+ "max_position_embeddings": 512,
18
+ "model_type": "ltgbert",
19
+ "num_attention_heads": 12,
20
+ "num_hidden_layers": 12,
21
+ "output_all_encoded_layers": true,
22
+ "pad_token_id": 4,
23
+ "position_bucket_size": 32,
24
+ "torch_dtype": "float32",
25
+ "transformers_version": "4.42.3",
26
+ "vocab_size": 16384
27
+ }
configuration_ltgbert.py ADDED
@@ -0,0 +1,107 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # coding=utf-8
2
+ # Copyright 2023 Language Technology Group from University of Oslo and The HuggingFace Inc. team.
3
+ #
4
+ # Licensed under the Apache License, Version 2.0 (the "License");
5
+ # you may not use this file except in compliance with the License.
6
+ # You may obtain a copy of the License at
7
+ #
8
+ # http://www.apache.org/licenses/LICENSE-2.0
9
+ #
10
+ # Unless required by applicable law or agreed to in writing, software
11
+ # distributed under the License is distributed on an "AS IS" BASIS,
12
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13
+ # See the License for the specific language governing permissions and
14
+ # limitations under the License.
15
+
16
+ """ LTG-BERT configutation """
17
+
18
+
19
+ from transformers.configuration_utils import PretrainedConfig
20
+
21
+
22
+ LTG_BERT_PRETRAINED_CONFIG_ARCHIVE_MAP = {
23
+ "bnc-bert-span": "https://huggingface.co/ltg/bnc-bert-span",
24
+ "bnc-bert-span-2x": "https://huggingface.co/ltg/bnc-bert-span-2x",
25
+ "bnc-bert-span-0.5x": "https://huggingface.co/ltg/bnc-bert-span-0.5x",
26
+ "bnc-bert-span-0.25x": "https://huggingface.co/ltg/bnc-bert-span-0.25x",
27
+ "bnc-bert-span-order": "https://huggingface.co/ltg/bnc-bert-span-order",
28
+ "bnc-bert-span-document": "https://huggingface.co/ltg/bnc-bert-span-document",
29
+ "bnc-bert-span-word": "https://huggingface.co/ltg/bnc-bert-span-word",
30
+ "bnc-bert-span-subword": "https://huggingface.co/ltg/bnc-bert-span-subword",
31
+
32
+ "norbert3-xs": "https://huggingface.co/ltg/norbert3-xs/config.json",
33
+ "norbert3-small": "https://huggingface.co/ltg/norbert3-small/config.json",
34
+ "norbert3-base": "https://huggingface.co/ltg/norbert3-base/config.json",
35
+ "norbert3-large": "https://huggingface.co/ltg/norbert3-large/config.json",
36
+
37
+ "norbert3-oversampled-base": "https://huggingface.co/ltg/norbert3-oversampled-base/config.json",
38
+ "norbert3-ncc-base": "https://huggingface.co/ltg/norbert3-ncc-base/config.json",
39
+ "norbert3-nak-base": "https://huggingface.co/ltg/norbert3-nak-base/config.json",
40
+ "norbert3-nb-base": "https://huggingface.co/ltg/norbert3-nb-base/config.json",
41
+ "norbert3-wiki-base": "https://huggingface.co/ltg/norbert3-wiki-base/config.json",
42
+ "norbert3-c4-base": "https://huggingface.co/ltg/norbert3-c4-base/config.json"
43
+ }
44
+
45
+
46
+ class LtgBertConfig(PretrainedConfig):
47
+ r"""
48
+ This is the configuration class to store the configuration of a [`LtgBertModel`]. It is used to
49
+ instantiate an LTG-BERT model according to the specified arguments, defining the model architecture.
50
+ Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
51
+ documentation from [`PretrainedConfig`] for more information.
52
+ Args:
53
+ vocab_size (`int`, *optional*, defaults to 16384):
54
+ Vocabulary size of the LTG-BERT model. Defines the number of different tokens that can be represented by the
55
+ `inputs_ids` passed when calling [`LtgBertModel`].
56
+ hidden_size (`int`, *optional*, defaults to 768):
57
+ Dimensionality of the encoder layers and the pooler layer.
58
+ num_hidden_layers (`int`, *optional*, defaults to 12):
59
+ Number of hidden layers in the Transformer encoder.
60
+ num_attention_heads (`int`, *optional*, defaults to 12):
61
+ Number of attention heads for each attention layer in the Transformer encoder.
62
+ intermediate_size (`int`, *optional*, defaults to 2048):
63
+ Dimensionality of the "intermediate" (often named feed-forward) layer in the Transformer encoder.
64
+ hidden_dropout_prob (`float`, *optional*, defaults to 0.1):
65
+ The dropout probability for all fully connected layers in the embeddings, encoder, and pooler.
66
+ attention_probs_dropout_prob (`float`, *optional*, defaults to 0.1):
67
+ The dropout ratio for the attention probabilities.
68
+ max_position_embeddings (`int`, *optional*, defaults to 512):
69
+ The maximum sequence length that this model might ever be used with. Typically set this to something large
70
+ just in case (e.g., 512 or 1024 or 2048).
71
+ layer_norm_eps (`float`, *optional*, defaults to 1e-12):
72
+ The epsilon used by the layer normalization layers.
73
+ classifier_dropout (`float`, *optional*):
74
+ The dropout ratio for the classification head.
75
+ """
76
+ model_type = "ltgbert"
77
+ def __init__(
78
+ self,
79
+ vocab_size=16384,
80
+ attention_probs_dropout_prob=0.1,
81
+ hidden_dropout_prob=0.1,
82
+ hidden_size=768,
83
+ intermediate_size=2048,
84
+ max_position_embeddings=512,
85
+ position_bucket_size=32,
86
+ num_attention_heads=12,
87
+ num_hidden_layers=12,
88
+ layer_norm_eps=1.0e-7,
89
+ pad_token_id=4,
90
+ output_all_encoded_layers=True,
91
+ classifier_dropout=None,
92
+ **kwargs,
93
+ ):
94
+ super().__init__(pad_token_id=pad_token_id, **kwargs)
95
+
96
+ self.vocab_size = vocab_size
97
+ self.hidden_size = hidden_size
98
+ self.num_hidden_layers = num_hidden_layers
99
+ self.num_attention_heads = num_attention_heads
100
+ self.intermediate_size = intermediate_size
101
+ self.hidden_dropout_prob = hidden_dropout_prob
102
+ self.attention_probs_dropout_prob = attention_probs_dropout_prob
103
+ self.max_position_embeddings = max_position_embeddings
104
+ self.output_all_encoded_layers = output_all_encoded_layers
105
+ self.position_bucket_size = position_bucket_size
106
+ self.layer_norm_eps = layer_norm_eps
107
+ self.classifier_dropout = classifier_dropout
modeling_ltgbert.py ADDED
@@ -0,0 +1,816 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # coding=utf-8
2
+ # Copyright 2023 Language Technology Group from University of Oslo and The HuggingFace Inc. team.
3
+ #
4
+ # Licensed under the Apache License, Version 2.0 (the "License");
5
+ # you may not use this file except in compliance with the License.
6
+ # You may obtain a copy of the License at
7
+ #
8
+ # http://www.apache.org/licenses/LICENSE-2.0
9
+ #
10
+ # Unless required by applicable law or agreed to in writing, software
11
+ # distributed under the License is distributed on an "AS IS" BASIS,
12
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13
+ # See the License for the specific language governing permissions and
14
+ # limitations under the License.
15
+
16
+ """ PyTorch LTG-BERT model."""
17
+
18
+
19
+ import math
20
+ from typing import List, Optional, Tuple, Union
21
+
22
+ import torch
23
+ import torch.nn as nn
24
+ import torch.nn.functional as F
25
+ from torch.utils import checkpoint
26
+
27
+ from .configuration_ltgbert import LtgBertConfig
28
+ from transformers.modeling_utils import PreTrainedModel
29
+ from transformers.activations import gelu_new
30
+ from transformers.modeling_outputs import (
31
+ MaskedLMOutput,
32
+ MultipleChoiceModelOutput,
33
+ QuestionAnsweringModelOutput,
34
+ SequenceClassifierOutput,
35
+ TokenClassifierOutput,
36
+ BaseModelOutput
37
+ )
38
+ from transformers.pytorch_utils import softmax_backward_data
39
+ from transformers.utils import add_start_docstrings, add_start_docstrings_to_model_forward
40
+
41
+
42
+ _CHECKPOINT_FOR_DOC = "ltg/bnc-bert-span"
43
+ _CONFIG_FOR_DOC = "LtgBertConfig"
44
+
45
+
46
+ LTG_BERT_PRETRAINED_MODEL_ARCHIVE_LIST = [
47
+ "bnc-bert-span",
48
+ "bnc-bert-span-2x",
49
+ "bnc-bert-span-0.5x",
50
+ "bnc-bert-span-0.25x",
51
+ "bnc-bert-span-order",
52
+ "bnc-bert-span-document",
53
+ "bnc-bert-span-word",
54
+ "bnc-bert-span-subword",
55
+
56
+ "norbert3-xs",
57
+ "norbert3-small",
58
+ "norbert3-base",
59
+ "norbert3-large",
60
+
61
+ "norbert3-oversampled-base",
62
+ "norbert3-ncc-base",
63
+ "norbert3-nak-base",
64
+ "norbert3-nb-base",
65
+ "norbert3-wiki-base",
66
+ "norbert3-c4-base"
67
+ ]
68
+
69
+
70
+ class Encoder(nn.Module):
71
+ def __init__(self, config, activation_checkpointing=False):
72
+ super().__init__()
73
+ self.layers = nn.ModuleList([EncoderLayer(config) for _ in range(config.num_hidden_layers)])
74
+
75
+ for i, layer in enumerate(self.layers):
76
+ layer.mlp.mlp[1].weight.data *= math.sqrt(1.0 / (2.0 * (1 + i)))
77
+ layer.mlp.mlp[-2].weight.data *= math.sqrt(1.0 / (2.0 * (1 + i)))
78
+
79
+ self.activation_checkpointing = activation_checkpointing
80
+
81
+ def forward(self, hidden_states, attention_mask, relative_embedding):
82
+ hidden_states, attention_probs = [hidden_states], []
83
+
84
+ for layer in self.layers:
85
+ if self.activation_checkpointing:
86
+ hidden_state, attention_p = checkpoint.checkpoint(layer, hidden_states[-1], attention_mask, relative_embedding)
87
+ else:
88
+ hidden_state, attention_p = layer(hidden_states[-1], attention_mask, relative_embedding)
89
+
90
+ hidden_states.append(hidden_state)
91
+ attention_probs.append(attention_p)
92
+
93
+ return hidden_states, attention_probs
94
+
95
+
96
+ class MaskClassifier(nn.Module):
97
+ def __init__(self, config, subword_embedding):
98
+ super().__init__()
99
+ self.nonlinearity = nn.Sequential(
100
+ nn.LayerNorm(config.hidden_size, config.layer_norm_eps, elementwise_affine=False),
101
+ nn.Linear(config.hidden_size, config.hidden_size),
102
+ nn.GELU(),
103
+ nn.LayerNorm(config.hidden_size, config.layer_norm_eps, elementwise_affine=False),
104
+ nn.Dropout(config.hidden_dropout_prob),
105
+ nn.Linear(subword_embedding.size(1), subword_embedding.size(0))
106
+ )
107
+ self.initialize(config.hidden_size, subword_embedding)
108
+
109
+ def initialize(self, hidden_size, embedding):
110
+ std = math.sqrt(2.0 / (5.0 * hidden_size))
111
+ nn.init.trunc_normal_(self.nonlinearity[1].weight, mean=0.0, std=std, a=-2*std, b=2*std)
112
+ self.nonlinearity[-1].weight = embedding
113
+ self.nonlinearity[1].bias.data.zero_()
114
+ self.nonlinearity[-1].bias.data.zero_()
115
+
116
+ def forward(self, x, masked_lm_labels=None):
117
+ if masked_lm_labels is not None:
118
+ x = torch.index_select(x.flatten(0, 1), 0, torch.nonzero(masked_lm_labels.flatten() != -100).squeeze())
119
+ x = self.nonlinearity(x)
120
+ return x
121
+
122
+
123
+ class EncoderLayer(nn.Module):
124
+ def __init__(self, config):
125
+ super().__init__()
126
+ self.attention = Attention(config)
127
+ self.mlp = FeedForward(config)
128
+
129
+ def forward(self, x, padding_mask, relative_embedding):
130
+ attention_output, attention_probs = self.attention(x, padding_mask, relative_embedding)
131
+ x = x + attention_output
132
+ x = x + self.mlp(x)
133
+ return x, attention_probs
134
+
135
+
136
+ class GeGLU(nn.Module):
137
+ def forward(self, x):
138
+ x, gate = x.chunk(2, dim=-1)
139
+ x = x * gelu_new(gate)
140
+ return x
141
+
142
+
143
+ class FeedForward(nn.Module):
144
+ def __init__(self, config):
145
+ super().__init__()
146
+ self.mlp = nn.Sequential(
147
+ nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps, elementwise_affine=False),
148
+ nn.Linear(config.hidden_size, 2*config.intermediate_size, bias=False),
149
+ GeGLU(),
150
+ nn.LayerNorm(config.intermediate_size, eps=config.layer_norm_eps, elementwise_affine=False),
151
+ nn.Linear(config.intermediate_size, config.hidden_size, bias=False),
152
+ nn.Dropout(config.hidden_dropout_prob)
153
+ )
154
+ self.initialize(config.hidden_size)
155
+
156
+ def initialize(self, hidden_size):
157
+ std = math.sqrt(2.0 / (5.0 * hidden_size))
158
+ nn.init.trunc_normal_(self.mlp[1].weight, mean=0.0, std=std, a=-2*std, b=2*std)
159
+ nn.init.trunc_normal_(self.mlp[-2].weight, mean=0.0, std=std, a=-2*std, b=2*std)
160
+
161
+ def forward(self, x):
162
+ return self.mlp(x)
163
+
164
+
165
+ class MaskedSoftmax(torch.autograd.Function):
166
+ @staticmethod
167
+ def forward(self, x, mask, dim):
168
+ self.dim = dim
169
+ x.masked_fill_(mask, float('-inf'))
170
+ x = torch.softmax(x, self.dim)
171
+ x.masked_fill_(mask, 0.0)
172
+ self.save_for_backward(x)
173
+ return x
174
+
175
+ @staticmethod
176
+ def backward(self, grad_output):
177
+ output, = self.saved_tensors
178
+ input_grad = softmax_backward_data(self, grad_output, output, self.dim, output)
179
+ return input_grad, None, None
180
+
181
+
182
+ class Attention(nn.Module):
183
+ def __init__(self, config):
184
+ super().__init__()
185
+
186
+ self.config = config
187
+
188
+ if config.hidden_size % config.num_attention_heads != 0:
189
+ raise ValueError(f"The hidden size {config.hidden_size} is not a multiple of the number of attention heads {config.num_attention_heads}")
190
+
191
+ self.hidden_size = config.hidden_size
192
+ self.num_heads = config.num_attention_heads
193
+ self.head_size = config.hidden_size // config.num_attention_heads
194
+
195
+ self.in_proj_qk = nn.Linear(config.hidden_size, 2*config.hidden_size, bias=True)
196
+ self.in_proj_v = nn.Linear(config.hidden_size, config.hidden_size, bias=True)
197
+ self.out_proj = nn.Linear(config.hidden_size, config.hidden_size, bias=True)
198
+
199
+ self.pre_layer_norm = nn.LayerNorm(config.hidden_size, config.layer_norm_eps, elementwise_affine=False)
200
+ self.post_layer_norm = nn.LayerNorm(config.hidden_size, config.layer_norm_eps, elementwise_affine=True)
201
+
202
+ position_indices = torch.arange(config.max_position_embeddings, dtype=torch.long).unsqueeze(1) \
203
+ - torch.arange(config.max_position_embeddings, dtype=torch.long).unsqueeze(0)
204
+ position_indices = self.make_log_bucket_position(position_indices, config.position_bucket_size, config.max_position_embeddings)
205
+ position_indices = config.position_bucket_size - 1 + position_indices
206
+ self.register_buffer("position_indices", position_indices, persistent=True)
207
+
208
+ self.dropout = nn.Dropout(config.attention_probs_dropout_prob)
209
+ self.scale = 1.0 / math.sqrt(3 * self.head_size)
210
+ self.initialize()
211
+
212
+ def make_log_bucket_position(self, relative_pos, bucket_size, max_position):
213
+ sign = torch.sign(relative_pos)
214
+ mid = bucket_size // 2
215
+ abs_pos = torch.where((relative_pos < mid) & (relative_pos > -mid), mid - 1, torch.abs(relative_pos).clamp(max=max_position - 1))
216
+ log_pos = torch.ceil(torch.log(abs_pos / mid) / math.log((max_position-1) / mid) * (mid - 1)).int() + mid
217
+ bucket_pos = torch.where(abs_pos <= mid, relative_pos, log_pos * sign).long()
218
+ return bucket_pos
219
+
220
+ def initialize(self):
221
+ std = math.sqrt(2.0 / (5.0 * self.hidden_size))
222
+ nn.init.trunc_normal_(self.in_proj_qk.weight, mean=0.0, std=std, a=-2*std, b=2*std)
223
+ nn.init.trunc_normal_(self.in_proj_v.weight, mean=0.0, std=std, a=-2*std, b=2*std)
224
+ nn.init.trunc_normal_(self.out_proj.weight, mean=0.0, std=std, a=-2*std, b=2*std)
225
+ self.in_proj_qk.bias.data.zero_()
226
+ self.in_proj_v.bias.data.zero_()
227
+ self.out_proj.bias.data.zero_()
228
+
229
+ def compute_attention_scores(self, hidden_states, relative_embedding):
230
+ key_len, batch_size, _ = hidden_states.size()
231
+ query_len = key_len
232
+
233
+ if self.position_indices.size(0) < query_len:
234
+ position_indices = torch.arange(query_len, dtype=torch.long).unsqueeze(1) \
235
+ - torch.arange(query_len, dtype=torch.long).unsqueeze(0)
236
+ position_indices = self.make_log_bucket_position(position_indices, self.config.position_bucket_size, 512)
237
+ position_indices = self.config.position_bucket_size - 1 + position_indices
238
+ self.position_indices = position_indices.to(hidden_states.device)
239
+
240
+ hidden_states = self.pre_layer_norm(hidden_states)
241
+
242
+ query, key = self.in_proj_qk(hidden_states).chunk(2, dim=2) # shape: [T, B, D]
243
+ value = self.in_proj_v(hidden_states) # shape: [T, B, D]
244
+
245
+ query = query.reshape(query_len, batch_size * self.num_heads, self.head_size).transpose(0, 1)
246
+ key = key.reshape(key_len, batch_size * self.num_heads, self.head_size).transpose(0, 1)
247
+ value = value.view(key_len, batch_size * self.num_heads, self.head_size).transpose(0, 1)
248
+
249
+ attention_scores = torch.bmm(query, key.transpose(1, 2) * self.scale)
250
+
251
+ query_pos, key_pos = self.in_proj_qk(self.dropout(relative_embedding)).chunk(2, dim=-1) # shape: [2T-1, D]
252
+ query_pos = query_pos.view(-1, self.num_heads, self.head_size) # shape: [2T-1, H, D]
253
+ key_pos = key_pos.view(-1, self.num_heads, self.head_size) # shape: [2T-1, H, D]
254
+
255
+ query = query.view(batch_size, self.num_heads, query_len, self.head_size)
256
+ key = key.view(batch_size, self.num_heads, query_len, self.head_size)
257
+
258
+ attention_c_p = torch.einsum("bhqd,khd->bhqk", query, key_pos.squeeze(1) * self.scale)
259
+ attention_p_c = torch.einsum("bhkd,qhd->bhqk", key * self.scale, query_pos.squeeze(1))
260
+
261
+ position_indices = self.position_indices[:query_len, :key_len].expand(batch_size, self.num_heads, -1, -1)
262
+ attention_c_p = attention_c_p.gather(3, position_indices)
263
+ attention_p_c = attention_p_c.gather(2, position_indices)
264
+
265
+ attention_scores = attention_scores.view(batch_size, self.num_heads, query_len, key_len)
266
+ attention_scores.add_(attention_c_p)
267
+ attention_scores.add_(attention_p_c)
268
+
269
+ return attention_scores, value
270
+
271
+ def compute_output(self, attention_probs, value):
272
+ attention_probs = self.dropout(attention_probs)
273
+ context = torch.bmm(attention_probs.flatten(0, 1), value) # shape: [B*H, Q, D]
274
+ context = context.transpose(0, 1).reshape(context.size(1), -1, self.hidden_size) # shape: [Q, B, H*D]
275
+ context = self.out_proj(context)
276
+ context = self.post_layer_norm(context)
277
+ context = self.dropout(context)
278
+ return context
279
+
280
+ def forward(self, hidden_states, attention_mask, relative_embedding):
281
+ attention_scores, value = self.compute_attention_scores(hidden_states, relative_embedding)
282
+ attention_probs = MaskedSoftmax.apply(attention_scores, attention_mask, -1)
283
+ return self.compute_output(attention_probs, value), attention_probs.detach()
284
+
285
+
286
+ class Embedding(nn.Module):
287
+ def __init__(self, config):
288
+ super().__init__()
289
+ self.hidden_size = config.hidden_size
290
+
291
+ self.word_embedding = nn.Embedding(config.vocab_size, config.hidden_size)
292
+ self.word_layer_norm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps, elementwise_affine=False)
293
+ self.dropout = nn.Dropout(config.hidden_dropout_prob)
294
+
295
+ self.relative_embedding = nn.Parameter(torch.empty(2 * config.position_bucket_size - 1, config.hidden_size))
296
+ self.relative_layer_norm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
297
+
298
+ self.initialize()
299
+
300
+ def initialize(self):
301
+ std = math.sqrt(2.0 / (5.0 * self.hidden_size))
302
+ nn.init.trunc_normal_(self.relative_embedding, mean=0.0, std=std, a=-2*std, b=2*std)
303
+ nn.init.trunc_normal_(self.word_embedding.weight, mean=0.0, std=std, a=-2*std, b=2*std)
304
+
305
+ def forward(self, input_ids):
306
+ word_embedding = self.dropout(self.word_layer_norm(self.word_embedding(input_ids)))
307
+ relative_embeddings = self.relative_layer_norm(self.relative_embedding)
308
+ return word_embedding, relative_embeddings
309
+
310
+
311
+ #
312
+ # HuggingFace wrappers
313
+ #
314
+
315
+ class LtgBertPreTrainedModel(PreTrainedModel):
316
+ """
317
+ An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained
318
+ models.
319
+ """
320
+
321
+ config_class = LtgBertConfig
322
+ base_model_prefix = "bnc-bert"
323
+ supports_gradient_checkpointing = True
324
+
325
+ def _set_gradient_checkpointing(self, module, value=False):
326
+ if isinstance(module, Encoder):
327
+ module.activation_checkpointing = value
328
+
329
+ def _init_weights(self, _):
330
+ pass # everything is already initialized
331
+
332
+
333
+ LTG_BERT_START_DOCSTRING = r"""
334
+ This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the
335
+ library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads
336
+ etc.)
337
+ This model is also a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass.
338
+ Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage
339
+ and behavior.
340
+ Parameters:
341
+ config ([`LtgBertConfig`]): Model configuration class with all the parameters of the model.
342
+ Initializing with a config file does not load the weights associated with the model, only the
343
+ configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights.
344
+ """
345
+
346
+ LTG_BERT_INPUTS_DOCSTRING = r"""
347
+ Args:
348
+ input_ids (`torch.LongTensor` of shape `({0})`):
349
+ Indices of input sequence tokens in the vocabulary.
350
+ Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
351
+ [`PreTrainedTokenizer.__call__`] for details.
352
+ [What are input IDs?](../glossary#input-ids)
353
+ attention_mask (`torch.FloatTensor` of shape `({0})`, *optional*):
354
+ Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
355
+ - 1 for tokens that are **not masked**,
356
+ - 0 for tokens that are **masked**.
357
+ [What are attention masks?](../glossary#attention-mask)
358
+ output_hidden_states (`bool`, *optional*):
359
+ Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
360
+ more detail.
361
+ output_attentions (`bool`, *optional*):
362
+ Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
363
+ tensors for more detail.
364
+ return_dict (`bool`, *optional*):
365
+ Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
366
+ """
367
+
368
+
369
+ @add_start_docstrings(
370
+ "The bare LTG-BERT transformer outputting raw hidden-states without any specific head on top.",
371
+ LTG_BERT_START_DOCSTRING,
372
+ )
373
+ class LtgBertModel(LtgBertPreTrainedModel):
374
+ def __init__(self, config, add_mlm_layer=False):
375
+ super().__init__(config)
376
+ self.config = config
377
+
378
+ self.embedding = Embedding(config)
379
+ self.transformer = Encoder(config, activation_checkpointing=False)
380
+ self.classifier = MaskClassifier(config, self.embedding.word_embedding.weight) if add_mlm_layer else None
381
+
382
+ def get_input_embeddings(self):
383
+ return self.embedding.word_embedding
384
+
385
+ def set_input_embeddings(self, value):
386
+ self.embedding.word_embedding = value
387
+
388
+ def get_contextualized_embeddings(
389
+ self,
390
+ input_ids: Optional[torch.Tensor] = None,
391
+ inputs_embeds: Optional[torch.Tensor] = None,
392
+ attention_mask: Optional[torch.Tensor] = None
393
+ ) -> List[torch.Tensor]:
394
+ if input_ids is not None:
395
+ input_shape = input_ids.size()
396
+ else:
397
+ raise ValueError("You have to specify input_ids")
398
+
399
+ batch_size, seq_length = input_shape
400
+ device = input_ids.device
401
+
402
+ if attention_mask is None:
403
+ attention_mask = torch.zeros(batch_size, seq_length, dtype=torch.bool, device=device)
404
+ else:
405
+ attention_mask = ~attention_mask.bool()
406
+ attention_mask = attention_mask.unsqueeze(1).unsqueeze(2)
407
+
408
+ static_embeddings, relative_embedding = self.embedding(input_ids.t())
409
+ contextualized_embeddings, attention_probs = self.transformer(static_embeddings, attention_mask, relative_embedding)
410
+ contextualized_embeddings = [e.transpose(0, 1) for e in contextualized_embeddings]
411
+ last_layer = contextualized_embeddings[-1]
412
+ contextualized_embeddings = [contextualized_embeddings[0]] + [
413
+ contextualized_embeddings[i] - contextualized_embeddings[i - 1]
414
+ for i in range(1, len(contextualized_embeddings))
415
+ ]
416
+ return last_layer, contextualized_embeddings, attention_probs
417
+
418
+ @add_start_docstrings_to_model_forward(LTG_BERT_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
419
+ def forward(
420
+ self,
421
+ input_ids: Optional[torch.Tensor] = None,
422
+ attention_mask: Optional[torch.Tensor] = None,
423
+ output_hidden_states: Optional[bool] = None,
424
+ output_attentions: Optional[bool] = None,
425
+ return_dict: Optional[bool] = None,
426
+ ) -> Union[Tuple[torch.Tensor], BaseModelOutput]:
427
+
428
+ output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
429
+ output_hidden_states = (
430
+ output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
431
+ )
432
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
433
+
434
+ sequence_output, contextualized_embeddings, attention_probs = self.get_contextualized_embeddings(input_ids=input_ids,
435
+ attention_mask=attention_mask)
436
+
437
+ if not return_dict:
438
+ return (
439
+ sequence_output,
440
+ *([contextualized_embeddings] if output_hidden_states else []),
441
+ *([attention_probs] if output_attentions else [])
442
+ )
443
+
444
+ return BaseModelOutput(
445
+ last_hidden_state=sequence_output,
446
+ hidden_states=contextualized_embeddings if output_hidden_states else None,
447
+ attentions=attention_probs if output_attentions else None
448
+ )
449
+
450
+
451
+ @add_start_docstrings("""LTG-BERT model with a `language modeling` head on top.""", LTG_BERT_START_DOCSTRING)
452
+ class LtgBertForMaskedLM(LtgBertModel):
453
+ _keys_to_ignore_on_load_unexpected = ["head"]
454
+
455
+ def __init__(self, config):
456
+ super().__init__(config, add_mlm_layer=True)
457
+
458
+ def get_output_embeddings(self):
459
+ return self.classifier.nonlinearity[-1].weight
460
+
461
+ def set_output_embeddings(self, new_embeddings):
462
+ self.classifier.nonlinearity[-1].weight = new_embeddings
463
+
464
+ @add_start_docstrings_to_model_forward(LTG_BERT_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
465
+ def forward(
466
+ self,
467
+ input_ids: Optional[torch.Tensor] = None,
468
+ attention_mask: Optional[torch.Tensor] = None,
469
+ output_hidden_states: Optional[bool] = None,
470
+ output_attentions: Optional[bool] = None,
471
+ return_dict: Optional[bool] = None,
472
+ labels: Optional[torch.LongTensor] = None,
473
+ ) -> Union[Tuple[torch.Tensor], MaskedLMOutput]:
474
+ r"""
475
+ labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
476
+ Labels for computing the masked language modeling loss. Indices should be in `[-100, 0, ...,
477
+ config.vocab_size]` (see `input_ids` docstring) Tokens with indices set to `-100` are ignored (masked), the
478
+ loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`
479
+ """
480
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
481
+
482
+ sequence_output, contextualized_embeddings, attention_probs = self.get_contextualized_embeddings(input_ids=input_ids,
483
+ attention_mask=attention_mask)
484
+ subword_prediction = self.classifier(sequence_output)
485
+
486
+ masked_lm_loss = None
487
+ if labels is not None:
488
+ masked_lm_loss = F.cross_entropy(subword_prediction.flatten(0, 1), labels.flatten())
489
+
490
+ if not return_dict:
491
+ output = (
492
+ subword_prediction,
493
+ *([contextualized_embeddings] if output_hidden_states else []),
494
+ *([attention_probs] if output_attentions else [])
495
+ )
496
+ return ((masked_lm_loss,) + output) if masked_lm_loss is not None else output
497
+
498
+ return MaskedLMOutput(
499
+ loss=masked_lm_loss,
500
+ logits=subword_prediction,
501
+ hidden_states=contextualized_embeddings if output_hidden_states else None,
502
+ attentions=attention_probs if output_attentions else None
503
+ )
504
+
505
+
506
+ class Classifier(nn.Module):
507
+ def __init__(self, config, num_labels: int):
508
+ super().__init__()
509
+
510
+ drop_out = getattr(config, "classifier_dropout", config.hidden_dropout_prob)
511
+
512
+ self.nonlinearity = nn.Sequential(
513
+ nn.LayerNorm(config.hidden_size, config.layer_norm_eps, elementwise_affine=False),
514
+ nn.Linear(config.hidden_size, config.hidden_size),
515
+ nn.GELU(),
516
+ nn.LayerNorm(config.hidden_size, config.layer_norm_eps, elementwise_affine=False),
517
+ nn.Dropout(drop_out),
518
+ nn.Linear(config.hidden_size, num_labels)
519
+ )
520
+ self.initialize(config.hidden_size)
521
+
522
+ def initialize(self, hidden_size):
523
+ std = math.sqrt(2.0 / (5.0 * hidden_size))
524
+ nn.init.trunc_normal_(self.nonlinearity[1].weight, mean=0.0, std=std, a=-2*std, b=2*std)
525
+ nn.init.trunc_normal_(self.nonlinearity[-1].weight, mean=0.0, std=std, a=-2*std, b=2*std)
526
+ self.nonlinearity[1].bias.data.zero_()
527
+ self.nonlinearity[-1].bias.data.zero_()
528
+
529
+ def forward(self, x):
530
+ x = self.nonlinearity(x)
531
+ return x
532
+
533
+
534
+ @add_start_docstrings(
535
+ """
536
+ LTG-BERT model with a sequence classification/regression head on top (a linear layer on top of the pooled
537
+ output) e.g. for GLUE tasks.
538
+ """,
539
+ LTG_BERT_START_DOCSTRING,
540
+ )
541
+ class LtgBertForSequenceClassification(LtgBertModel):
542
+ _keys_to_ignore_on_load_unexpected = ["classifier"]
543
+ _keys_to_ignore_on_load_missing = ["head"]
544
+
545
+ def __init__(self, config):
546
+ super().__init__(config, add_mlm_layer=False)
547
+
548
+ self.num_labels = config.num_labels
549
+ # self.head = Classifier(config, self.num_labels)
550
+
551
+ self.config = config
552
+
553
+ classifier_dropout = (
554
+ config.classifier_dropout if config.classifier_dropout is not None else config.hidden_dropout_prob
555
+ )
556
+ self.dropout = nn.Dropout(classifier_dropout)
557
+ self.head = nn.Linear(config.hidden_size, config.num_labels)
558
+
559
+ # Initialize weights and apply final processing
560
+ self.post_init()
561
+
562
+ @add_start_docstrings_to_model_forward(LTG_BERT_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
563
+ def forward(
564
+ self,
565
+ input_ids: Optional[torch.Tensor] = None,
566
+ attention_mask: Optional[torch.Tensor] = None,
567
+ output_attentions: Optional[bool] = None,
568
+ output_hidden_states: Optional[bool] = None,
569
+ inputs_embeds: Optional[torch.Tensor] = None,
570
+ return_dict: Optional[bool] = None,
571
+ labels: Optional[torch.LongTensor] = None,
572
+ ) -> Union[Tuple[torch.Tensor], SequenceClassifierOutput]:
573
+ r"""
574
+ labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
575
+ Labels for computing the sequence classification/regression loss. Indices should be in `[0, ...,
576
+ config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If
577
+ `config.num_labels > 1` a classification loss is computed (Cross-Entropy).
578
+ """
579
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
580
+
581
+ sequence_output, contextualized_embeddings, attention_probs = self.get_contextualized_embeddings(input_ids=input_ids,
582
+ inputs_embeds=inputs_embeds,
583
+ attention_mask=attention_mask)
584
+ logits = self.head(sequence_output[:, 0, :])
585
+
586
+ loss = None
587
+ if labels is not None:
588
+ if self.config.problem_type is None:
589
+ if self.num_labels == 1:
590
+ self.config.problem_type = "regression"
591
+ elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int):
592
+ self.config.problem_type = "single_label_classification"
593
+ else:
594
+ self.config.problem_type = "multi_label_classification"
595
+
596
+ if self.config.problem_type == "regression":
597
+ loss_fct = nn.MSELoss()
598
+ if self.num_labels == 1:
599
+ loss = loss_fct(logits.squeeze(), labels.squeeze())
600
+ else:
601
+ loss = loss_fct(logits, labels)
602
+ elif self.config.problem_type == "single_label_classification":
603
+ loss_fct = nn.CrossEntropyLoss()
604
+ loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1))
605
+ elif self.config.problem_type == "multi_label_classification":
606
+ loss_fct = nn.BCEWithLogitsLoss()
607
+ loss = loss_fct(logits, labels)
608
+
609
+ if not return_dict:
610
+ output = (
611
+ logits,
612
+ *([contextualized_embeddings] if output_hidden_states else []),
613
+ *([attention_probs] if output_attentions else [])
614
+ )
615
+ return ((loss,) + output) if loss is not None else output
616
+
617
+ return SequenceClassifierOutput(
618
+ loss=loss,
619
+ logits=logits,
620
+ hidden_states=contextualized_embeddings if output_hidden_states else None,
621
+ attentions=attention_probs if output_attentions else None
622
+ )
623
+
624
+
625
+ @add_start_docstrings(
626
+ """
627
+ LTG-BERT model with a token classification head on top (a linear layer on top of the hidden-states output) e.g. for
628
+ Named-Entity-Recognition (NER) tasks.
629
+ """,
630
+ LTG_BERT_START_DOCSTRING,
631
+ )
632
+ class LtgBertForTokenClassification(LtgBertModel):
633
+ _keys_to_ignore_on_load_unexpected = ["classifier"]
634
+ _keys_to_ignore_on_load_missing = ["head"]
635
+
636
+ def __init__(self, config):
637
+ super().__init__(config, add_mlm_layer=False)
638
+
639
+ self.num_labels = config.num_labels
640
+ self.head = Classifier(config, self.num_labels)
641
+
642
+ @add_start_docstrings_to_model_forward(LTG_BERT_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
643
+ def forward(
644
+ self,
645
+ input_ids: Optional[torch.Tensor] = None,
646
+ attention_mask: Optional[torch.Tensor] = None,
647
+ token_type_ids: Optional[torch.Tensor] = None,
648
+ position_ids: Optional[torch.Tensor] = None,
649
+ output_attentions: Optional[bool] = None,
650
+ output_hidden_states: Optional[bool] = None,
651
+ return_dict: Optional[bool] = None,
652
+ labels: Optional[torch.LongTensor] = None,
653
+ ) -> Union[Tuple[torch.Tensor], TokenClassifierOutput]:
654
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
655
+
656
+ sequence_output, contextualized_embeddings, attention_probs = self.get_contextualized_embeddings(input_ids=input_ids,
657
+ attention_mask=attention_mask)
658
+ logits = self.head(sequence_output)
659
+
660
+ loss = None
661
+ if labels is not None:
662
+ loss_fct = nn.CrossEntropyLoss()
663
+ loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1))
664
+
665
+ if not return_dict:
666
+ output = (
667
+ logits,
668
+ *([contextualized_embeddings] if output_hidden_states else []),
669
+ *([attention_probs] if output_attentions else [])
670
+ )
671
+ return ((loss,) + output) if loss is not None else output
672
+
673
+ return TokenClassifierOutput(
674
+ loss=loss,
675
+ logits=logits,
676
+ hidden_states=contextualized_embeddings if output_hidden_states else None,
677
+ attentions=attention_probs if output_attentions else None
678
+ )
679
+
680
+
681
+ @add_start_docstrings(
682
+ """
683
+ LTG-BERT model with a span classification head on top for extractive question-answering tasks like SQuAD (a linear
684
+ layers on top of the hidden-states output to compute `span start logits` and `span end logits`).
685
+ """,
686
+ LTG_BERT_START_DOCSTRING,
687
+ )
688
+ class LtgBertForQuestionAnswering(LtgBertModel):
689
+ _keys_to_ignore_on_load_unexpected = ["classifier"]
690
+ _keys_to_ignore_on_load_missing = ["head"]
691
+
692
+ def __init__(self, config):
693
+ super().__init__(config, add_mlm_layer=False)
694
+
695
+ self.num_labels = config.num_labels
696
+ self.head = Classifier(config, self.num_labels)
697
+
698
+ @add_start_docstrings_to_model_forward(LTG_BERT_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
699
+ def forward(
700
+ self,
701
+ input_ids: Optional[torch.Tensor] = None,
702
+ attention_mask: Optional[torch.Tensor] = None,
703
+ token_type_ids: Optional[torch.Tensor] = None,
704
+ position_ids: Optional[torch.Tensor] = None,
705
+ output_attentions: Optional[bool] = None,
706
+ output_hidden_states: Optional[bool] = None,
707
+ return_dict: Optional[bool] = None,
708
+ start_positions: Optional[torch.Tensor] = None,
709
+ end_positions: Optional[torch.Tensor] = None
710
+ ) -> Union[Tuple[torch.Tensor], QuestionAnsweringModelOutput]:
711
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
712
+
713
+ sequence_output, contextualized_embeddings, attention_probs = self.get_contextualized_embeddings(input_ids=input_ids,
714
+ attention_mask=attention_mask)
715
+ logits = self.head(sequence_output)
716
+
717
+ start_logits, end_logits = logits.split(1, dim=-1)
718
+ start_logits = start_logits.squeeze(-1).contiguous()
719
+ end_logits = end_logits.squeeze(-1).contiguous()
720
+
721
+ total_loss = None
722
+ if start_positions is not None and end_positions is not None:
723
+ # If we are on multi-GPU, split add a dimension
724
+ if len(start_positions.size()) > 1:
725
+ start_positions = start_positions.squeeze(-1)
726
+ if len(end_positions.size()) > 1:
727
+ end_positions = end_positions.squeeze(-1)
728
+
729
+ # sometimes the start/end positions are outside our model inputs, we ignore these terms
730
+ ignored_index = start_logits.size(1)
731
+ start_positions = start_positions.clamp(0, ignored_index)
732
+ end_positions = end_positions.clamp(0, ignored_index)
733
+
734
+ loss_fct = nn.CrossEntropyLoss(ignore_index=ignored_index)
735
+ start_loss = loss_fct(start_logits, start_positions)
736
+ end_loss = loss_fct(end_logits, end_positions)
737
+ total_loss = (start_loss + end_loss) / 2
738
+
739
+ if not return_dict:
740
+ output = (
741
+ start_logits,
742
+ end_logits,
743
+ *([contextualized_embeddings] if output_hidden_states else []),
744
+ *([attention_probs] if output_attentions else [])
745
+ )
746
+ return ((total_loss,) + output) if total_loss is not None else output
747
+
748
+ return QuestionAnsweringModelOutput(
749
+ loss=total_loss,
750
+ start_logits=start_logits,
751
+ end_logits=end_logits,
752
+ hidden_states=contextualized_embeddings if output_hidden_states else None,
753
+ attentions=attention_probs if output_attentions else None
754
+ )
755
+
756
+
757
+ @add_start_docstrings(
758
+ """
759
+ LTG-BERT model with a multiple choice classification head on top (a linear layer on top of the pooled output and a
760
+ softmax) e.g. for RocStories/SWAG tasks.
761
+ """,
762
+ LTG_BERT_START_DOCSTRING,
763
+ )
764
+ class LtgBertForMultipleChoice(LtgBertModel):
765
+ _keys_to_ignore_on_load_unexpected = ["classifier"]
766
+ _keys_to_ignore_on_load_missing = ["head"]
767
+
768
+ def __init__(self, config):
769
+ super().__init__(config, add_mlm_layer=False)
770
+
771
+ self.num_labels = getattr(config, "num_labels", 2)
772
+ self.head = Classifier(config, self.num_labels)
773
+
774
+ @add_start_docstrings_to_model_forward(LTG_BERT_INPUTS_DOCSTRING.format("batch_size, num_choices, sequence_length"))
775
+ def forward(
776
+ self,
777
+ input_ids: Optional[torch.Tensor] = None,
778
+ attention_mask: Optional[torch.Tensor] = None,
779
+ token_type_ids: Optional[torch.Tensor] = None,
780
+ position_ids: Optional[torch.Tensor] = None,
781
+ labels: Optional[torch.Tensor] = None,
782
+ output_attentions: Optional[bool] = None,
783
+ output_hidden_states: Optional[bool] = None,
784
+ return_dict: Optional[bool] = None
785
+ ) -> Union[Tuple[torch.Tensor], MultipleChoiceModelOutput]:
786
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
787
+ num_choices = input_ids.shape[1]
788
+
789
+ flat_input_ids = input_ids.view(-1, input_ids.size(-1))
790
+ flat_attention_mask = attention_mask.view(-1, attention_mask.size(-1)) if attention_mask is not None else None
791
+
792
+ sequence_output, contextualized_embeddings, attention_probs = self.get_contextualized_embeddings(input_ids=flat_input_ids,
793
+ attention_mask=flat_attention_mask)
794
+ logits = self.head(sequence_output)
795
+ reshaped_logits = logits.view(-1, num_choices)
796
+
797
+ loss = None
798
+ if labels is not None:
799
+ loss_fct = nn.CrossEntropyLoss()
800
+ loss = loss_fct(reshaped_logits, labels)
801
+
802
+ if not return_dict:
803
+ output = (
804
+ reshaped_logits,
805
+ *([contextualized_embeddings] if output_hidden_states else []),
806
+ *([attention_probs] if output_attentions else [])
807
+ )
808
+ return ((loss,) + output) if loss is not None else output
809
+
810
+ return MultipleChoiceModelOutput(
811
+ loss=loss,
812
+ logits=reshaped_logits,
813
+ hidden_states=contextualized_embeddings if output_hidden_states else None,
814
+ attentions=attention_probs if output_attentions else None
815
+ )
816
+
pytorch_model.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:3c683af8f1fd3b06c35922cb1d2bc025ad33ad22b13ae6b11e4db5ec35bf47b4
3
+ size 418130742