--- license: apache-2.0 tags: - generated_from_trainer datasets: - marsyas/gtzan metrics: - accuracy model-index: - name: distilhubert-finetuned-gtzan-7.5E-5rate results: [] --- # distilhubert-finetuned-gtzan-7.5E-5rate This model is a fine-tuned version of [ntu-spml/distilhubert](https://huggingface.co/ntu-spml/distilhubert) on the GTZAN dataset. It achieves the following results on the evaluation set: - Loss: 0.7037 - Accuracy: 0.83 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 7.500000000000001e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 1.6131 | 1.0 | 113 | 1.7407 | 0.43 | | 1.0878 | 2.0 | 226 | 1.1306 | 0.68 | | 0.7836 | 3.0 | 339 | 0.8427 | 0.77 | | 0.5646 | 4.0 | 452 | 0.6842 | 0.8 | | 0.2202 | 5.0 | 565 | 0.5216 | 0.84 | | 0.1047 | 6.0 | 678 | 0.5698 | 0.82 | | 0.0824 | 7.0 | 791 | 0.6976 | 0.83 | | 0.1118 | 8.0 | 904 | 0.6875 | 0.81 | | 0.1161 | 9.0 | 1017 | 0.6779 | 0.84 | | 0.0855 | 10.0 | 1130 | 0.7037 | 0.83 | ### Framework versions - Transformers 4.30.2 - Pytorch 2.0.1+cu118 - Datasets 2.13.1 - Tokenizers 0.13.3