duoquote
commited on
Commit
•
696ac96
1
Parent(s):
06410f5
Refactor labels and update model configuration
Browse files- labels.json +1 -1
- model/config.json +65 -0
- model/model.safetensors +3 -0
- model/special_tokens_map.json +7 -0
- model/tokenizer.json +0 -0
- model/tokenizer_config.json +58 -0
- model/training_args.bin +3 -0
- model/vocab.txt +0 -0
- train.py +17 -19
labels.json
CHANGED
@@ -1 +1 @@
|
|
1 |
-
{"1": "
|
|
|
1 |
+
{"1": "\u00dclke", "2": "\u0130l", "3": "\u0130l\u00e7e", "4": "Mahalle", "5": "Cadde", "6": "Sokak", "7": "Bina Ad\u0131", "8": "Bina Numaras\u0131", "9": "Yer Ad\u0131", "10": "Site", "11": "Adres Detay", "12": "Blok No", "13": "Bulvar", "14": "Daire No", "15": "Posta Kodu", "16": "Kat", "0": "[PAD]", "17": "[UNK]"}
|
model/config.json
ADDED
@@ -0,0 +1,65 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"_name_or_path": "dbmdz/bert-base-turkish-cased",
|
3 |
+
"architectures": [
|
4 |
+
"BertForTokenClassification"
|
5 |
+
],
|
6 |
+
"attention_probs_dropout_prob": 0.1,
|
7 |
+
"classifier_dropout": null,
|
8 |
+
"hidden_act": "gelu",
|
9 |
+
"hidden_dropout_prob": 0.1,
|
10 |
+
"hidden_size": 768,
|
11 |
+
"id2label": {
|
12 |
+
"0": "[PAD]",
|
13 |
+
"1": "\u00dclke",
|
14 |
+
"2": "\u0130l",
|
15 |
+
"3": "\u0130l\u00e7e",
|
16 |
+
"4": "Mahalle",
|
17 |
+
"5": "Cadde",
|
18 |
+
"6": "Sokak",
|
19 |
+
"7": "Bina Ad\u0131",
|
20 |
+
"8": "Bina Numaras\u0131",
|
21 |
+
"9": "Yer Ad\u0131",
|
22 |
+
"10": "Site",
|
23 |
+
"11": "Adres Detay",
|
24 |
+
"12": "Blok No",
|
25 |
+
"13": "Bulvar",
|
26 |
+
"14": "Daire No",
|
27 |
+
"15": "Posta Kodu",
|
28 |
+
"16": "Kat",
|
29 |
+
"17": "[UNK]"
|
30 |
+
},
|
31 |
+
"initializer_range": 0.02,
|
32 |
+
"intermediate_size": 3072,
|
33 |
+
"label2id": {
|
34 |
+
"Adres Detay": 11,
|
35 |
+
"Bina Ad\u0131": 7,
|
36 |
+
"Bina Numaras\u0131": 8,
|
37 |
+
"Blok No": 12,
|
38 |
+
"Bulvar": 13,
|
39 |
+
"Cadde": 5,
|
40 |
+
"Daire No": 14,
|
41 |
+
"Kat": 16,
|
42 |
+
"Mahalle": 4,
|
43 |
+
"Posta Kodu": 15,
|
44 |
+
"Site": 10,
|
45 |
+
"Sokak": 6,
|
46 |
+
"Yer Ad\u0131": 9,
|
47 |
+
"[PAD]": 0,
|
48 |
+
"[UNK]": 17,
|
49 |
+
"\u00dclke": 1,
|
50 |
+
"\u0130l": 2,
|
51 |
+
"\u0130l\u00e7e": 3
|
52 |
+
},
|
53 |
+
"layer_norm_eps": 1e-12,
|
54 |
+
"max_position_embeddings": 512,
|
55 |
+
"model_type": "bert",
|
56 |
+
"num_attention_heads": 12,
|
57 |
+
"num_hidden_layers": 12,
|
58 |
+
"pad_token_id": 0,
|
59 |
+
"position_embedding_type": "absolute",
|
60 |
+
"torch_dtype": "float32",
|
61 |
+
"transformers_version": "4.37.0",
|
62 |
+
"type_vocab_size": 2,
|
63 |
+
"use_cache": true,
|
64 |
+
"vocab_size": 32000
|
65 |
+
}
|
model/model.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:3f61796d22b89ac6c4b5bf7cd5932198148f721b23b684a10950709b692328c6
|
3 |
+
size 440185728
|
model/special_tokens_map.json
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"cls_token": "[CLS]",
|
3 |
+
"mask_token": "[MASK]",
|
4 |
+
"pad_token": "[PAD]",
|
5 |
+
"sep_token": "[SEP]",
|
6 |
+
"unk_token": "[UNK]"
|
7 |
+
}
|
model/tokenizer.json
ADDED
The diff for this file is too large to render.
See raw diff
|
|
model/tokenizer_config.json
ADDED
@@ -0,0 +1,58 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"added_tokens_decoder": {
|
3 |
+
"0": {
|
4 |
+
"content": "[PAD]",
|
5 |
+
"lstrip": false,
|
6 |
+
"normalized": false,
|
7 |
+
"rstrip": false,
|
8 |
+
"single_word": false,
|
9 |
+
"special": true
|
10 |
+
},
|
11 |
+
"1": {
|
12 |
+
"content": "[UNK]",
|
13 |
+
"lstrip": false,
|
14 |
+
"normalized": false,
|
15 |
+
"rstrip": false,
|
16 |
+
"single_word": false,
|
17 |
+
"special": true
|
18 |
+
},
|
19 |
+
"2": {
|
20 |
+
"content": "[CLS]",
|
21 |
+
"lstrip": false,
|
22 |
+
"normalized": false,
|
23 |
+
"rstrip": false,
|
24 |
+
"single_word": false,
|
25 |
+
"special": true
|
26 |
+
},
|
27 |
+
"3": {
|
28 |
+
"content": "[SEP]",
|
29 |
+
"lstrip": false,
|
30 |
+
"normalized": false,
|
31 |
+
"rstrip": false,
|
32 |
+
"single_word": false,
|
33 |
+
"special": true
|
34 |
+
},
|
35 |
+
"4": {
|
36 |
+
"content": "[MASK]",
|
37 |
+
"lstrip": false,
|
38 |
+
"normalized": false,
|
39 |
+
"rstrip": false,
|
40 |
+
"single_word": false,
|
41 |
+
"special": true
|
42 |
+
}
|
43 |
+
},
|
44 |
+
"clean_up_tokenization_spaces": true,
|
45 |
+
"cls_token": "[CLS]",
|
46 |
+
"do_basic_tokenize": true,
|
47 |
+
"do_lower_case": false,
|
48 |
+
"mask_token": "[MASK]",
|
49 |
+
"max_len": 512,
|
50 |
+
"model_max_length": 512,
|
51 |
+
"never_split": null,
|
52 |
+
"pad_token": "[PAD]",
|
53 |
+
"sep_token": "[SEP]",
|
54 |
+
"strip_accents": null,
|
55 |
+
"tokenize_chinese_chars": true,
|
56 |
+
"tokenizer_class": "BertTokenizer",
|
57 |
+
"unk_token": "[UNK]"
|
58 |
+
}
|
model/training_args.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:300abae98dafa01f4daa08ba322e5f0ec434e9a6823866fb12dde9fb1397ba62
|
3 |
+
size 4664
|
model/vocab.txt
ADDED
The diff for this file is too large to render.
See raw diff
|
|
train.py
CHANGED
@@ -63,16 +63,20 @@ def load_data():
|
|
63 |
return labels, [orjson.loads(line) for line in data.split("\n") if line]
|
64 |
|
65 |
labels, data = load_data()
|
66 |
-
label_to_id = {}
|
67 |
-
for i, label in enumerate(labels):
|
68 |
-
|
69 |
-
|
70 |
-
label_to_id["O"] = 0
|
|
|
|
|
|
|
71 |
id_to_label = {v: k for k, v in label_to_id.items()}
|
72 |
|
73 |
tokenizer = AutoTokenizer.from_pretrained("dbmdz/bert-base-turkish-cased")
|
74 |
model = AutoModelForTokenClassification.from_pretrained("dbmdz/bert-base-turkish-cased", num_labels=len(label_to_id)).to(device)
|
75 |
-
|
|
|
76 |
|
77 |
from datasets import DatasetDict, Dataset
|
78 |
|
@@ -93,20 +97,18 @@ def preprocess_data(item, tokenizer, label_to_id):
|
|
93 |
attention_mask = inputs["attention_mask"]
|
94 |
offset_mapping = inputs["offset_mapping"]
|
95 |
|
96 |
-
labels = ["
|
97 |
-
last_label = "O"
|
98 |
for token_idx, [off_start, off_end] in enumerate(offset_mapping[0]):
|
99 |
if off_start == off_end:
|
100 |
continue
|
101 |
|
102 |
for start, end, label in item['label']:
|
103 |
if start <= off_start and off_end <= end:
|
104 |
-
|
105 |
-
labels[token_idx] = "I-" + label
|
106 |
-
else:
|
107 |
-
labels[token_idx] = "B-" + label
|
108 |
-
last_label = label
|
109 |
break
|
|
|
|
|
|
|
110 |
|
111 |
# Convert labels to ids
|
112 |
labels = [label_to_id[label] for label in labels]
|
@@ -130,7 +132,6 @@ class AddressDataset(Dataset):
|
|
130 |
return {key: torch.tensor(val) for key, val in item.items()}
|
131 |
|
132 |
|
133 |
-
|
134 |
dataset = Dataset.from_generator(
|
135 |
lambda: (preprocess_data(item, tokenizer, label_to_id) for item in data),
|
136 |
)
|
@@ -165,8 +166,8 @@ def compute_metrics(pred, id_to_label):
|
|
165 |
labels = [[id_to_label[label_id] for label_id in label_ids] for label_ids in labels]
|
166 |
preds = [[id_to_label[pred] for pred in preds] for preds in preds]
|
167 |
|
168 |
-
labels = [label for label in labels
|
169 |
-
preds = [pred for pred in preds
|
170 |
|
171 |
mlb = MultiLabelBinarizer()
|
172 |
mlb.fit([id_to_label.values()])
|
@@ -193,7 +194,4 @@ trainer = Trainer(
|
|
193 |
trainer.train()
|
194 |
trainer.evaluate()
|
195 |
|
196 |
-
with open("./labels.json", "w") as f:
|
197 |
-
json.dump(id_to_label, f)
|
198 |
-
|
199 |
trainer.save_model("./model")
|
|
|
63 |
return labels, [orjson.loads(line) for line in data.split("\n") if line]
|
64 |
|
65 |
labels, data = load_data()
|
66 |
+
# label_to_id = {}
|
67 |
+
# for i, label in enumerate(labels):
|
68 |
+
# label_to_id["B-" + label["text"]] = i * 2 + 1
|
69 |
+
# label_to_id["I-" + label["text"]] = i * 2 + 2
|
70 |
+
# label_to_id["O"] = 0
|
71 |
+
label_to_id = {label["text"]: i + 1 for i, label in enumerate(labels)}
|
72 |
+
label_to_id["[PAD]"] = 0
|
73 |
+
label_to_id["[UNK]"] = len(label_to_id)
|
74 |
id_to_label = {v: k for k, v in label_to_id.items()}
|
75 |
|
76 |
tokenizer = AutoTokenizer.from_pretrained("dbmdz/bert-base-turkish-cased")
|
77 |
model = AutoModelForTokenClassification.from_pretrained("dbmdz/bert-base-turkish-cased", num_labels=len(label_to_id)).to(device)
|
78 |
+
model.config.id2label = id_to_label
|
79 |
+
model.config.label2id = label_to_id
|
80 |
|
81 |
from datasets import DatasetDict, Dataset
|
82 |
|
|
|
97 |
attention_mask = inputs["attention_mask"]
|
98 |
offset_mapping = inputs["offset_mapping"]
|
99 |
|
100 |
+
labels = ["[PAD]"] * 128
|
|
|
101 |
for token_idx, [off_start, off_end] in enumerate(offset_mapping[0]):
|
102 |
if off_start == off_end:
|
103 |
continue
|
104 |
|
105 |
for start, end, label in item['label']:
|
106 |
if start <= off_start and off_end <= end:
|
107 |
+
labels[token_idx] = label
|
|
|
|
|
|
|
|
|
108 |
break
|
109 |
+
|
110 |
+
if labels[token_idx] == "[PAD]":
|
111 |
+
labels[token_idx] = "[UNK]"
|
112 |
|
113 |
# Convert labels to ids
|
114 |
labels = [label_to_id[label] for label in labels]
|
|
|
132 |
return {key: torch.tensor(val) for key, val in item.items()}
|
133 |
|
134 |
|
|
|
135 |
dataset = Dataset.from_generator(
|
136 |
lambda: (preprocess_data(item, tokenizer, label_to_id) for item in data),
|
137 |
)
|
|
|
166 |
labels = [[id_to_label[label_id] for label_id in label_ids] for label_ids in labels]
|
167 |
preds = [[id_to_label[pred] for pred in preds] for preds in preds]
|
168 |
|
169 |
+
labels = [set(label) for label in labels]
|
170 |
+
preds = [set(pred) for pred in preds]
|
171 |
|
172 |
mlb = MultiLabelBinarizer()
|
173 |
mlb.fit([id_to_label.values()])
|
|
|
194 |
trainer.train()
|
195 |
trainer.evaluate()
|
196 |
|
|
|
|
|
|
|
197 |
trainer.save_model("./model")
|