File size: 5,639 Bytes
0255e9b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 |
import io
import requests
import json
import time
import torch
import orjson
import zipfile
import torch.nn.functional as F
from torch.utils.data import Dataset, DataLoader
from transformers import BertTokenizerFast, BertForTokenClassification, Trainer, TrainingArguments, BertConfig
from transformers import AutoTokenizer, AutoModelForTokenClassification
API_URL = "http://dockerbase.duo:8000"
PROJECT_ID = 1
device = torch.device("cuda") if torch.cuda.is_available() else torch.device("cpu")
def load_data():
res = requests.post(
API_URL + "/v1/auth/login/",
json={"username": "admin", "password": "123"}
)
token = res.json()["key"]
res = requests.post(API_URL + "/v1/projects/1/download",
json={"format":"JSONL","exportApproved": True},
headers={"Authorization": "Token " + token}
)
task_id = res.json()["task_id"]
ready = False
print("Waiting for export task to be ready.", end="")
while not ready:
res = requests.get(
API_URL + "/v1/tasks/status/" + str(task_id),
headers={"Authorization": "Token " + token}
)
ready = res.json()["ready"]
if not ready:
time.sleep(1)
print(".", end="")
print("")
res = requests.get(
API_URL + f"/v1/projects/{PROJECT_ID}/download",
params={"taskId": task_id},
headers={"Authorization": "Token " + token}
)
zip_file = io.BytesIO(res.content)
with zipfile.ZipFile(zip_file, "r") as zip_ref:
data = zip_ref.read("admin.jsonl").decode("utf-8")
res = requests.get(
API_URL + f"/v1/projects/{PROJECT_ID}/span-types",
headers={"Authorization": "Token " + token}
)
labels = res.json()
return labels, [orjson.loads(line) for line in data.split("\n") if line]
labels, data = load_data()
label_to_id = {}
for i, label in enumerate(labels):
label_to_id["B-" + label["text"]] = i * 2 + 1
label_to_id["I-" + label["text"]] = i * 2 + 2
label_to_id["O"] = 0
id_to_label = {v: k for k, v in label_to_id.items()}
tokenizer = AutoTokenizer.from_pretrained("dbmdz/bert-base-turkish-cased")
model = AutoModelForTokenClassification.from_pretrained("dbmdz/bert-base-turkish-cased", num_labels=len(label_to_id)).to(device)
from datasets import DatasetDict, Dataset
def preprocess_data(item, tokenizer, label_to_id):
text = item['text']
inputs = tokenizer(
text,
return_offsets_mapping=True,
return_tensors="pt",
truncation=True,
padding='max_length',
max_length=128,
)
input_ids = inputs["input_ids"]
attention_mask = inputs["attention_mask"]
offset_mapping = inputs["offset_mapping"]
labels = ["O"] * 128
last_label = "O"
for token_idx, [off_start, off_end] in enumerate(offset_mapping[0]):
if off_start == off_end:
continue
for start, end, label in item['label']:
if start <= off_start and off_end <= end:
if last_label == label:
labels[token_idx] = "I-" + label
else:
labels[token_idx] = "B-" + label
last_label = label
break
# Convert labels to ids
labels = [label_to_id[label] for label in labels]
return {
"input_ids": input_ids.flatten(),
"attention_mask": attention_mask.flatten(),
"labels": labels,
}
class AddressDataset(Dataset):
def __init__(self, dataset):
self.dataset = dataset
def __len__(self):
return len(self.dataset)
def __getitem__(self, index):
item = self.dataset[index]
return {key: torch.tensor(val) for key, val in item.items()}
dataset = Dataset.from_generator(
lambda: (preprocess_data(item, tokenizer, label_to_id) for item in data),
)
dataset = dataset.train_test_split(test_size=0.2)
dataset = DatasetDict({
"train": dataset["train"],
"test": dataset["test"]
})
training_args = TrainingArguments(
output_dir="./results",
num_train_epochs=35,
per_device_train_batch_size=32,
per_device_eval_batch_size=32,
# logging_dir="./logs",
# logging_first_step=True,
# evaluation_strategy="epoch",
# save_strategy="epoch",
logging_strategy="epoch",
# load_best_model_at_end=True,
)
from sklearn.preprocessing import MultiLabelBinarizer
from sklearn.metrics import accuracy_score, precision_score, recall_score, f1_score
def compute_metrics(pred, id_to_label):
labels = pred.label_ids
preds = pred.predictions.argmax(-1)
labels = [[id_to_label[label_id] for label_id in label_ids] for label_ids in labels]
preds = [[id_to_label[pred] for pred in preds] for preds in preds]
labels = [label for label in labels if label != "O"]
preds = [pred for pred in preds if pred != "O"]
mlb = MultiLabelBinarizer()
mlb.fit([id_to_label.values()])
labels = mlb.transform(labels)
preds = mlb.transform(preds)
return {
"accuracy": accuracy_score(labels, preds),
"precision": precision_score(labels, preds, average="micro"),
"recall": recall_score(labels, preds, average="micro"),
"f1": f1_score(labels, preds, average="micro"),
}
trainer = Trainer(
model=model,
args=training_args,
train_dataset=dataset["train"],
eval_dataset=dataset["test"],
tokenizer=tokenizer,
compute_metrics=lambda p: compute_metrics(p, id_to_label),
)
trainer.train()
trainer.evaluate()
with open("./labels.json", "w") as f:
json.dump(id_to_label, f)
trainer.save_model("./model") |