Text Generation
Transformers
Safetensors
starcoder2
code
Eval Results
text-generation-inference
Inference Endpoints
compressed-tensors
alexmarques commited on
Commit
d98a62d
1 Parent(s): 7ad49b1

Create README.md

Browse files
Files changed (1) hide show
  1. README.md +209 -0
README.md ADDED
@@ -0,0 +1,209 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ pipeline_tag: text-generation
3
+ datasets:
4
+ - bigcode/the-stack-v2-train
5
+ license: bigcode-openrail-m
6
+ library_name: transformers
7
+ tags:
8
+ - code
9
+ model-index:
10
+ - name: starcoder2-15b-quantized.w8a16
11
+ results:
12
+ - task:
13
+ type: text-generation
14
+ dataset:
15
+ name: HumanEval+
16
+ type: humanevalplus
17
+ metrics:
18
+ - type: pass@1
19
+ value: 37.6
20
+ - task:
21
+ type: text-generation
22
+ dataset:
23
+ name: HumanEval
24
+ type: humaneval
25
+ metrics:
26
+ - type: pass@1
27
+ value: 44.3
28
+ ---
29
+
30
+ # starcoder2-15b-quantized.w8a16
31
+
32
+ ## Model Overview
33
+ - **Model Architecture:** StarCoder2
34
+ - **Input:** Text
35
+ - **Output:** Text
36
+ - **Model Optimizations:**
37
+ - **Weight quantization:** INT8
38
+ - **Intended Use Cases:** Intended for commercial and research use. Similarly to [starcoder2-15b](https://huggingface.co/bigcode/starcoder2-15b), this model is intended for code generation and is _not_ an instruction model. Commands like "Write a function that computes the square root." do not work well.
39
+ - **Out-of-scope:** Use in any manner that violates applicable laws or regulations (including trade compliance laws).
40
+ - **Release Date:** 8/1/2024
41
+ - **Version:** 1.0
42
+ - **License(s):** bigcode-openrail-m
43
+ - **Model Developers:** Neural Magic
44
+
45
+ Quantized version of [starcoder2-15b](https://huggingface.co/bigcode/starcoder2-15b).
46
+ It achieves a HumanEval pass@1 of 44.3, whereas the unquantized model achieves 44.8 when evaluated under the same conditions.
47
+
48
+ ### Model Optimizations
49
+
50
+ This model was obtained by quantizing the weights of [starcoder2-15b](https://huggingface.co/bigcode/starcoder2-15b) to INT8 data type.
51
+ This optimization reduces the number of bits per parameter from 16 to 8, reducing the disk size and GPU memory requirements by approximately 50%.
52
+
53
+ Only the weights of the linear operators within transformers blocks are quantized. Symmetric per-channel quantization is applied, in which a linear scaling per output dimension maps the INT8 and floating point representations of the quantized weights.
54
+ The [GPTQ](https://arxiv.org/abs/2210.17323) algorithm is applied for quantization, as implemented in the [llm-compressor](https://github.com/vllm-project/llm-compressor) library.
55
+ GPTQ used a 1% damping factor and 256 sequences of 8,192 random tokens.
56
+
57
+
58
+ ## Deployment
59
+
60
+ ### Use with vLLM
61
+
62
+ This model can be deployed efficiently using the [vLLM](https://docs.vllm.ai/en/latest/) backend, as shown in the example below.
63
+
64
+ ```python
65
+ from vllm import LLM, SamplingParams
66
+ from transformers import AutoTokenizer
67
+
68
+ model_id = "neuralmagic/starcoder2-15b-quantized.w8a16"
69
+ number_gpus = 1
70
+
71
+ sampling_params = SamplingParams(temperature=0.2, top_p=0.95, max_tokens=256)
72
+
73
+ tokenizer = AutoTokenizer.from_pretrained(model_id)
74
+
75
+ prompts = ["def print_hello_world():"]
76
+
77
+ llm = LLM(model=model_id, tensor_parallel_size=number_gpus)
78
+
79
+ outputs = llm.generate(prompts, sampling_params)
80
+
81
+ generated_text = outputs[0].outputs[0].text
82
+ print(generated_text)
83
+ ```
84
+
85
+ vLLM aslo supports OpenAI-compatible serving. See the [documentation](https://docs.vllm.ai/en/latest/) for more details.
86
+
87
+
88
+ ## Creation
89
+
90
+ This model was created by using the [llm-compressor](https://github.com/vllm-project/llm-compressor) library as presented in the code snipet below.
91
+
92
+ ```python
93
+ from transformers import AutoTokenizer
94
+ from datasets import Dataset
95
+ from llmcompressor.transformers import SparseAutoModelForCausalLM, oneshot
96
+ from llmcompressor.modifiers.quantization import GPTQModifier
97
+ import random
98
+
99
+ model_id = "bigcode/starcoder2-15b"
100
+
101
+ num_samples = 256
102
+ max_seq_len = 8192
103
+
104
+ tokenizer = AutoTokenizer.from_pretrained(model_id)
105
+
106
+ max_token_id = len(tokenizer.get_vocab()) - 1
107
+ input_ids = [[random.randint(0, max_token_id) for _ in range(max_seq_len)] for _ in range(num_samples)]
108
+ attention_mask = num_samples * [max_seq_len * [1]]
109
+ ds = Dataset.from_dict({"input_ids": input_ids, "attention_mask": attention_mask})
110
+
111
+ recipe = GPTQModifier(
112
+ targets="Linear",
113
+ scheme="W8A16",
114
+ ignore=["lm_head"],
115
+ dampening_frac=0.01,
116
+ )
117
+
118
+ model = SparseAutoModelForCausalLM.from_pretrained(
119
+ model_id,
120
+ device_map="auto",
121
+ trust_remote_code=True,
122
+ )
123
+
124
+ oneshot(
125
+ model=model,
126
+ dataset=ds,
127
+ recipe=recipe,
128
+ max_seq_length=max_seq_len,
129
+ num_calibration_samples=num_samples,
130
+ )
131
+ model.save_pretrained("starcoder2-15b-quantized.w8a16")
132
+ ```
133
+
134
+
135
+
136
+ ## Evaluation
137
+
138
+ The model was evaluated on the [HumanEval](https://arxiv.org/abs/2107.03374) and [HumanEval+](https://arxiv.org/abs/2305.01210) benchmarks, using the generation configuration from [Big Code Models Leaderboard](https://huggingface.co/spaces/bigcode/bigcode-models-leaderboard).
139
+ We used Neural Magic's fork of [evalplus](https://github.com/neuralmagic/evalplus) and the [vLLM](https://docs.vllm.ai/en/stable/) engine, using the following commands:
140
+
141
+ ```
142
+ python codegen/generate.py \
143
+ --model neuralmagic/starcoder2-15b-quantized.w8a16 \
144
+ --bs 16 \
145
+ --temperature 0.2 \
146
+ --n_samples 50 \
147
+ --dataset humaneval \
148
+ -- root "."
149
+
150
+ python3 evalplus/sanitize.py humaneval/neuralmagic--starcoder2-15b-quantized.w8a16_vllm_temp_0.2
151
+
152
+ evalplus.evaluate --dataset humaneval --samples humaneval/neuralmagic--starcoder2-15b-quantized.w8a16_vllm_temp_0.2-sanitized
153
+ ```
154
+
155
+ ### Accuracy
156
+
157
+ <table>
158
+ <tr>
159
+ <td><strong>Benchmark</strong>
160
+ </td>
161
+ <td><strong>starcoder2-15b </strong>
162
+ </td>
163
+ <td><strong>starcoder2-15b-quantized.w8a16 (this model)</strong>
164
+ </td>
165
+ <td><strong>Recovery</strong>
166
+ </td>
167
+ </tr>
168
+ <tr>
169
+ <td>HumanEval pass@1
170
+ </td>
171
+ <td>44.8
172
+ </td>
173
+ <td>44.3
174
+ </td>
175
+ <td>98.9%
176
+ </td>
177
+ </tr>
178
+ <tr>
179
+ <td>HumanEval pass@10
180
+ </td>
181
+ <td>62.7
182
+ </td>
183
+ <td>62.6
184
+ </td>
185
+ <td>99.8%
186
+ </td>
187
+ </tr>
188
+ <tr>
189
+ <td>HumanEval+ pass@1
190
+ </td>
191
+ <td>38.6
192
+ </td>
193
+ <td>37.6
194
+ </td>
195
+ <td>97.4%
196
+ </td>
197
+ </tr>
198
+ <tr>
199
+ <td>HumanEval+ pass@10
200
+ </td>
201
+ <td>54.9
202
+ </td>
203
+ <td>54.5
204
+ </td>
205
+ <td>99.3%
206
+ </td>
207
+ </tr>
208
+ <tr>
209
+ </table>