--- pipeline_tag: text-generation tags: - int8 - vllm license: gemma --- # gemma-2-2b-it-quantized.w8a16 ## Model Overview - **Model Architecture:** Gemma 2 - **Input:** Text - **Output:** Text - **Model Optimizations:** - **Weight quantization:** INT8 - **Intended Use Cases:** Intended for commercial and research use in English. Similarly to [gemma-2-2b](https://huggingface.co/google/gemma-2-2b), this is a pre-trained base model that can be used as is or specialized to specific domains. - **Out-of-scope:** Use in any manner that violates applicable laws or regulations (including trade compliance laws). Use in languages other than English. - **Release Date:** 8/13/2024 - **Version:** 1.0 - **License(s):** [gemma](https://ai.google.dev/gemma/terms) - **Model Developers:** Neural Magic Quantized version of [gemma-2-2b](https://huggingface.co/google/gemma-2-2b). It achieves an average score of 52.03 on the [OpenLLM](https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard) benchmark (version 1), whereas the unquantized model achieves 52.16. ### Model Optimizations This model was obtained by quantizing the weights of [gemma-2-2b](https://huggingface.co/google/gemma-2-2b) to INT8 data type. This optimization reduces the number of bits per parameter from 16 to 8, reducing the disk size and GPU memory requirements by approximately 50%. Only the weights of the linear operators within transformers blocks are quantized. Symmetric per-channel quantization is applied, in which a linear scaling per output dimension maps the INT8 and floating point representations of the quantized weights. The [GPTQ](https://arxiv.org/abs/2210.17323) algorithm is applied for quantization, as implemented in the [llm-compressor](https://github.com/vllm-project/llm-compressor) library. GPTQ used a 1% damping factor and 256 sequences sequences taken from Neural Magic's [LLM compression calibration dataset](https://huggingface.co/datasets/neuralmagic/LLM_compression_calibration). ## Deployment ### Use with vLLM This model can be deployed efficiently using the [vLLM](https://docs.vllm.ai/en/latest/) backend, as shown in the example below. ```python from vllm import LLM, SamplingParams from transformers import AutoTokenizer model_id = "neuralmagic/gemma-2-2b-quantized.w8a16" sampling_params = SamplingParams(temperature=0.6, top_p=0.9, max_tokens=256) tokenizer = AutoTokenizer.from_pretrained(model_id) messages = [ {"role": "user", "content": "Who are you? Please respond in pirate speak!"}, ] prompts = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True) llm = LLM(model=model_id) outputs = llm.generate(prompts, sampling_params) generated_text = outputs[0].outputs[0].text print(generated_text) ``` vLLM also supports OpenAI-compatible serving. See the [documentation](https://docs.vllm.ai/en/latest/) for more details. ## Creation This model was created by using the [llm-compressor](https://github.com/vllm-project/llm-compressor) library as presented in the code snipet below. ```python from transformers import AutoTokenizer from datasets import load_dataset from llmcompressor.transformers import SparseAutoModelForCausalLM, oneshot from llmcompressor.modifiers.quantization import GPTQModifier model_id = "google/gemma-2-2b" num_samples = 256 max_seq_len = 8192 tokenizer = AutoTokenizer.from_pretrained(model_id) def preprocess_fn(example): return {"text": tokenizer.apply_chat_template(example["messages"], add_generation_prompt=False, tokenize=False)} ds = load_dataset("neuralmagic/LLM_compression_calibration", split="train") ds = ds.shuffle().select(range(num_samples)) ds = ds.map(preprocess_fn) recipe = GPTQModifier( targets="Linear", scheme="W8A16", ignore=["lm_head"], dampening_frac=0.01, ) model = SparseAutoModelForCausalLM.from_pretrained( model_id, device_map="auto", trust_remote_code=True, ) oneshot( model=model, dataset=ds, recipe=recipe, max_seq_length=max_seq_len, num_calibration_samples=num_samples, ) model.save_pretrained("gemma-2-2b-quantized.w8a16") ``` ## Evaluation The model was evaluated on the [OpenLLM](https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard) leaderboard tasks (version 1) with the [lm-evaluation-harness](https://github.com/EleutherAI/lm-evaluation-harness/tree/383bbd54bc621086e05aa1b030d8d4d5635b25e6) (commit 383bbd54bc621086e05aa1b030d8d4d5635b25e6) and the [vLLM](https://docs.vllm.ai/en/stable/) engine, using the following command: ``` lm_eval \ --model vllm \ --model_args pretrained="neuralmagic/gemma-2-2b-quantized.w8a16",dtype=auto,gpu_memory_utilization=0.4,add_bos_token=True,max_model_len=4096 \ --tasks openllm \ --batch_size auto ``` ### Accuracy #### Open LLM Leaderboard evaluation scores
Benchmark | gemma-2-2b | gemma-2-2b-quantized.w8a16 (this model) | Recovery |
MMLU (5-shot) | 53.01 | 52.86 | 99.7% |
ARC Challenge (25-shot) | 53.92 | 54.27 | 100.6% |
GSM-8K (5-shot, strict-match) | 24.03 | 23.81 | 99.1% |
Hellaswag (10-shot) | 74.74 | 74.56 | 99.8% |
Winogrande (5-shot) | 70.96 | 70.56 | 99.4% |
TruthfulQA (0-shot) | 36.29 | 36.15 | 99.6% |
Average | 52.16 | 52.03 | 99.8% |