alexmarques commited on
Commit
5eda8fb
1 Parent(s): 30e79b2

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +42 -1
README.md CHANGED
@@ -1,3 +1,44 @@
1
  ---
2
- {}
 
 
 
 
3
  ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
  ---
2
+ datasets:
3
+ - HuggingFaceH4/ultrachat_200k
4
+ language:
5
+ - en
6
+ pipeline_tag: text-generation
7
  ---
8
+
9
+ # SparseLlama-2-7b-ultrachat_200k-pruned_50.2of4
10
+
11
+ ## Model Overview
12
+ - **Model Architecture:** Llama-2
13
+ - **Input:** Text
14
+ - **Output:** Text
15
+ - **Model Optimizations:**
16
+ - **Pruned:** 50% 2:4
17
+ - **Release Date:** 6/28/2024
18
+ - **Version:** 1.0
19
+ - **Model Developers:** Neural Magic
20
+
21
+ Compressed version of [Llama-2-7b](https://huggingface.co/meta-llama/Llama-2-7b-hf) specialized for text-generation.
22
+ This model was obtained by fine-tuning the Sparse Foundational model [Sparse-Llama-2-7b-pruned_50.2of4](https://huggingface.co/nm-testing/SparseLlama-2-7b-pruned_50.2of4) on the [ultrachat_200k](https://huggingface.co/datasets/HuggingFaceH4/ultrachat_200k) dataset, using [SquareHead distillation] (https://arxiv.org/abs/2310.06927) and [Llama-2-7b-ultrachat200k](https://huggingface.co/neuralmagic/Llama-2-7b-ultrachat200k) as teacher.
23
+ It achieves a win rate of 64.9% on the [AlpacaEval](https://github.com/tatsu-lab/alpaca_eval) benchmark (version 1.0) when using [Llama-2-70b-chat](https://huggingface.co/meta-llama/Llama-2-70b-chat-hf) as evaluator, whereas the dense [Llama-2-7b-ultrachat200k](https://huggingface.co/neuralmagic/Llama-2-7b-ultrachat200k) model achieves 57.6% win rate.
24
+
25
+ This model was produced as part if Neural Magic's Sparse Foundational Models initiative, and demostrates the capability of Sparse Foundational Models to transfer to the text-generation domain.
26
+
27
+ **Note:** This model uses the chat template from [zephyr-7b-beta](https://huggingface.co/HuggingFaceH4/zephyr-7b-beta).
28
+
29
+ ## Model Optimizations
30
+
31
+ This model is derived from the Sparse Foundational model [Sparse-Llama-2-7b-pruned_50.2of4](https://huggingface.co/nm-testing/SparseLlama-2-7b-pruned_50.2of4), which was obtained by applying the [SparseGPT](https://arxiv.org/abs/2301.00774) algorithm to prune [Llama-2-7b](https://huggingface.co/meta-llama/Llama-2-7b-hf) to 50% sparsity with a 2:4 mask.
32
+ This optimization reduces the number of parameters by 50%, reducing the disk size and FLOPs by the same level.
33
+
34
+ ## Evaluation
35
+
36
+ This model was evaluated in the [AlpacaEval](https://github.com/tatsu-lab/alpaca_eval) benchmark using [Llama-2-70b-chat](https://huggingface.co/meta-llama/Llama-2-70b-chat-hf) as evaluator.
37
+
38
+ ## Accuracy
39
+
40
+ | Model | Win rate | Recovery |
41
+ | :----- | :--------: | :--------: |
42
+ | [Llama-2-7b](https://huggingface.co/meta-llama/Llama-2-7b-hf) | 3.7% | -- |
43
+ | [Llama-2-7b-ultrachat200k](https://huggingface.co/neuralmagic/Llama-2-7b-ultrachat200k) | 57.6% | -- |
44
+ | SparseLlama-2-7b-ultrachat_200k-pruned_50.2of4 | 64.9% | 113% |