alexmarques
commited on
Commit
•
e8e0ea8
1
Parent(s):
422a385
Update README.md
Browse files
README.md
CHANGED
@@ -130,10 +130,11 @@ model.save_pretrained("Meta-Llama-3.1-70B-Instruct-quantized.w8a16")
|
|
130 |
|
131 |
The model was evaluated on MMLU, ARC-Challenge, GSM-8K, Hellaswag, Winogrande and TruthfulQA.
|
132 |
Evaluation was conducted using the Neural Magic fork of [lm-evaluation-harness](https://github.com/neuralmagic/lm-evaluation-harness/tree/llama_3.1_instruct) (branch llama_3.1_instruct) and the [vLLM](https://docs.vllm.ai/en/stable/) engine.
|
133 |
-
This version of the lm-evaluation-harness includes versions of ARC-Challenge and GSM-8K that match the prompting style of [Meta-Llama-3.1-Instruct-evals](https://huggingface.co/datasets/meta-llama/Meta-Llama-3.1-70B-Instruct-evals).
|
134 |
|
135 |
### Accuracy
|
136 |
|
|
|
137 |
<table>
|
138 |
<tr>
|
139 |
<td><strong>Benchmark</strong>
|
@@ -148,21 +149,31 @@ This version of the lm-evaluation-harness includes versions of ARC-Challenge and
|
|
148 |
<tr>
|
149 |
<td>MMLU (5-shot)
|
150 |
</td>
|
151 |
-
<td>
|
152 |
</td>
|
153 |
-
<td>
|
154 |
</td>
|
155 |
-
<td>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
156 |
</td>
|
157 |
</tr>
|
158 |
<tr>
|
159 |
<td>ARC Challenge (0-shot)
|
160 |
</td>
|
161 |
-
<td>
|
162 |
</td>
|
163 |
-
<td>
|
164 |
</td>
|
165 |
-
<td>98.
|
166 |
</td>
|
167 |
</tr>
|
168 |
<tr>
|
@@ -208,11 +219,11 @@ This version of the lm-evaluation-harness includes versions of ARC-Challenge and
|
|
208 |
<tr>
|
209 |
<td><strong>Average</strong>
|
210 |
</td>
|
211 |
-
<td><strong>83.
|
212 |
</td>
|
213 |
-
<td><strong>82.
|
214 |
</td>
|
215 |
-
<td><strong>
|
216 |
</td>
|
217 |
</tr>
|
218 |
</table>
|
@@ -225,17 +236,30 @@ The results were obtained using the following commands:
|
|
225 |
```
|
226 |
lm_eval \
|
227 |
--model vllm \
|
228 |
-
--model_args pretrained="neuralmagic/Meta-Llama-3.1-70B-Instruct-quantized.w8a16",dtype=auto,add_bos_token=True,max_model_len=
|
229 |
-
--tasks
|
|
|
|
|
230 |
--num_fewshot 5 \
|
231 |
--batch_size auto
|
232 |
```
|
233 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
234 |
#### ARC-Challenge
|
235 |
```
|
236 |
lm_eval \
|
237 |
--model vllm \
|
238 |
-
--model_args pretrained="neuralmagic/Meta-Llama-3.1-70B-Instruct-quantized.w8a16",dtype=auto,add_bos_token=True,max_model_len=
|
239 |
--tasks arc_challenge_llama_3.1_instruct \
|
240 |
--apply_chat_template \
|
241 |
--num_fewshot 0 \
|
@@ -246,7 +270,7 @@ lm_eval \
|
|
246 |
```
|
247 |
lm_eval \
|
248 |
--model vllm \
|
249 |
-
--model_args pretrained="neuralmagic/Meta-Llama-3.1-70B-Instruct-quantized.w8a16",dtype=auto,add_bos_token=True,max_model_len=4096,tensor_parallel_size=
|
250 |
--tasks gsm8k_cot_llama_3.1_instruct \
|
251 |
--fewshot_as_multiturn \
|
252 |
--apply_chat_template \
|
@@ -258,7 +282,7 @@ lm_eval \
|
|
258 |
```
|
259 |
lm_eval \
|
260 |
--model vllm \
|
261 |
-
--model_args pretrained="neuralmagic/Meta-Llama-3.1-70B-Instruct-quantized.w8a16",dtype=auto,add_bos_token=True,max_model_len=4096,tensor_parallel_size=
|
262 |
--tasks hellaswag \
|
263 |
--num_fewshot 10 \
|
264 |
--batch_size auto
|
@@ -268,7 +292,7 @@ lm_eval \
|
|
268 |
```
|
269 |
lm_eval \
|
270 |
--model vllm \
|
271 |
-
--model_args pretrained="neuralmagic/Meta-Llama-3.1-70B-Instruct-quantized.w8a16",dtype=auto,add_bos_token=True,max_model_len=4096,tensor_parallel_size=
|
272 |
--tasks winogrande \
|
273 |
--num_fewshot 5 \
|
274 |
--batch_size auto
|
@@ -278,7 +302,7 @@ lm_eval \
|
|
278 |
```
|
279 |
lm_eval \
|
280 |
--model vllm \
|
281 |
-
--model_args pretrained="neuralmagic/Meta-Llama-3.1-70B-Instruct-quantized.w8a16",dtype=auto,add_bos_token=True,max_model_len=4096,tensor_parallel_size=
|
282 |
--tasks truthfulqa \
|
283 |
--num_fewshot 0 \
|
284 |
--batch_size auto
|
|
|
130 |
|
131 |
The model was evaluated on MMLU, ARC-Challenge, GSM-8K, Hellaswag, Winogrande and TruthfulQA.
|
132 |
Evaluation was conducted using the Neural Magic fork of [lm-evaluation-harness](https://github.com/neuralmagic/lm-evaluation-harness/tree/llama_3.1_instruct) (branch llama_3.1_instruct) and the [vLLM](https://docs.vllm.ai/en/stable/) engine.
|
133 |
+
This version of the lm-evaluation-harness includes versions of MMLU, ARC-Challenge and GSM-8K that match the prompting style of [Meta-Llama-3.1-Instruct-evals](https://huggingface.co/datasets/meta-llama/Meta-Llama-3.1-70B-Instruct-evals).
|
134 |
|
135 |
### Accuracy
|
136 |
|
137 |
+
#### Open LLM Leaderboard evaluation scores
|
138 |
<table>
|
139 |
<tr>
|
140 |
<td><strong>Benchmark</strong>
|
|
|
149 |
<tr>
|
150 |
<td>MMLU (5-shot)
|
151 |
</td>
|
152 |
+
<td>83.88
|
153 |
</td>
|
154 |
+
<td>81.07
|
155 |
</td>
|
156 |
+
<td>96.6%
|
157 |
+
</td>
|
158 |
+
</tr>
|
159 |
+
<tr>
|
160 |
+
<td>MMLU (CoT, 0-shot)
|
161 |
+
</td>
|
162 |
+
<td>85.74
|
163 |
+
</td>
|
164 |
+
<td>83.29
|
165 |
+
</td>
|
166 |
+
<td>97.1%
|
167 |
</td>
|
168 |
</tr>
|
169 |
<tr>
|
170 |
<td>ARC Challenge (0-shot)
|
171 |
</td>
|
172 |
+
<td>93.26
|
173 |
</td>
|
174 |
+
<td>91.98
|
175 |
</td>
|
176 |
+
<td>98.6%
|
177 |
</td>
|
178 |
</tr>
|
179 |
<tr>
|
|
|
219 |
<tr>
|
220 |
<td><strong>Average</strong>
|
221 |
</td>
|
222 |
+
<td><strong>83.89</strong>
|
223 |
</td>
|
224 |
+
<td><strong>82.54</strong>
|
225 |
</td>
|
226 |
+
<td><strong>98.4%</strong>
|
227 |
</td>
|
228 |
</tr>
|
229 |
</table>
|
|
|
236 |
```
|
237 |
lm_eval \
|
238 |
--model vllm \
|
239 |
+
--model_args pretrained="neuralmagic/Meta-Llama-3.1-70B-Instruct-quantized.w8a16",dtype=auto,add_bos_token=True,max_model_len=3850,max_gen_toks=10,tensor_parallel_size=1 \
|
240 |
+
--tasks mmlu_llama_3.1_instruct \
|
241 |
+
--fewshot_as_multiturn \
|
242 |
+
--apply_chat_template \
|
243 |
--num_fewshot 5 \
|
244 |
--batch_size auto
|
245 |
```
|
246 |
|
247 |
+
#### MMLU-CoT
|
248 |
+
```
|
249 |
+
lm_eval \
|
250 |
+
--model vllm \
|
251 |
+
--model_args pretrained="neuralmagic/Meta-Llama-3.1-70B-Instruct-quantized.w8a16",dtype=auto,add_bos_token=True,max_model_len=4064,max_gen_toks=1024,tensor_parallel_size=1 \
|
252 |
+
--tasks mmlu_cot_0shot_llama_3.1_instruct \
|
253 |
+
--apply_chat_template \
|
254 |
+
--num_fewshot 0 \
|
255 |
+
--batch_size auto
|
256 |
+
```
|
257 |
+
|
258 |
#### ARC-Challenge
|
259 |
```
|
260 |
lm_eval \
|
261 |
--model vllm \
|
262 |
+
--model_args pretrained="neuralmagic/Meta-Llama-3.1-70B-Instruct-quantized.w8a16",dtype=auto,add_bos_token=True,max_model_len=3940,max_gen_toks=100,tensor_parallel_size=1 \
|
263 |
--tasks arc_challenge_llama_3.1_instruct \
|
264 |
--apply_chat_template \
|
265 |
--num_fewshot 0 \
|
|
|
270 |
```
|
271 |
lm_eval \
|
272 |
--model vllm \
|
273 |
+
--model_args pretrained="neuralmagic/Meta-Llama-3.1-70B-Instruct-quantized.w8a16",dtype=auto,add_bos_token=True,max_model_len=4096,max_gen_toks=1024,tensor_parallel_size=1 \
|
274 |
--tasks gsm8k_cot_llama_3.1_instruct \
|
275 |
--fewshot_as_multiturn \
|
276 |
--apply_chat_template \
|
|
|
282 |
```
|
283 |
lm_eval \
|
284 |
--model vllm \
|
285 |
+
--model_args pretrained="neuralmagic/Meta-Llama-3.1-70B-Instruct-quantized.w8a16",dtype=auto,add_bos_token=True,max_model_len=4096,tensor_parallel_size=1 \
|
286 |
--tasks hellaswag \
|
287 |
--num_fewshot 10 \
|
288 |
--batch_size auto
|
|
|
292 |
```
|
293 |
lm_eval \
|
294 |
--model vllm \
|
295 |
+
--model_args pretrained="neuralmagic/Meta-Llama-3.1-70B-Instruct-quantized.w8a16",dtype=auto,add_bos_token=True,max_model_len=4096,tensor_parallel_size=1 \
|
296 |
--tasks winogrande \
|
297 |
--num_fewshot 5 \
|
298 |
--batch_size auto
|
|
|
302 |
```
|
303 |
lm_eval \
|
304 |
--model vllm \
|
305 |
+
--model_args pretrained="neuralmagic/Meta-Llama-3.1-70B-Instruct-quantized.w8a16",dtype=auto,add_bos_token=True,max_model_len=4096,tensor_parallel_size=1 \
|
306 |
--tasks truthfulqa \
|
307 |
--num_fewshot 0 \
|
308 |
--batch_size auto
|