--- license: llama3.2 language: - en - de - fr - it - pt - hi - es - th pipeline_tag: text-generation tags: - llama - llama-3 - neuralmagic - llmcompressor base_model: meta-llama/Llama-3.2-3B-Instruct --- # Llama-3.2-3B-Instruct-quantized.w8a8 ## Model Overview - **Model Architecture:** Llama-3 - **Input:** Text - **Output:** Text - **Model Optimizations:** - **Activation quantization:** INT8 - **Weight quantization:** INT8 - **Intended Use Cases:** Intended for commercial and research use multiple languages. Similarly to [Llama-3.2-3B-Instruct](https://huggingface.co/meta-llama/Llama-3.2-3B-Instruct), this models is intended for assistant-like chat. - **Out-of-scope:** Use in any manner that violates applicable laws or regulations (including trade compliance laws). - **Release Date:** 9/25/2024 - **Version:** 1.0 - **License(s):** Llama3.2 - **Model Developers:** Neural Magic Quantized version of [Llama-3.2-3B-Instruct](https://huggingface.co/meta-llama/Llama-3.2-3B-Instruct). It achieves scores within 1% of the scores of the unquantized model for MMLU, ARC-Challenge, GSM-8k, Hellaswag, Winogrande and TruthfulQA. ### Model Optimizations This model was obtained by quantizing the weights of [Llama-3.2-3B-Instruct](https://huggingface.co/meta-llama/Llama-3.2-3B-Instruct) to INT8 data type. This optimization reduces the number of bits used to represent weights and activations from 16 to 8, reducing GPU memory requirements (by approximately 50%) and increasing matrix-multiply compute throughput (by approximately 2x). Weight quantization also reduces disk size requirements by approximately 50%. Only weights and activations of the linear operators within transformers blocks are quantized. Weights are quantized with a symmetric static per-channel scheme, where a fixed linear scaling factor is applied between INT8 and floating point representations for each output channel dimension. Activations are quantized with a symmetric dynamic per-token scheme, computing a linear scaling factor at runtime for each token between INT8 and floating point representations. Linear scaling factors are computed via by minimizing the mean squarred error (MSE). The [SmoothQuant](https://arxiv.org/abs/2211.10438) algorithm is used to alleviate outliers in the activations, whereas rhe [GPTQ](https://arxiv.org/abs/2210.17323) algorithm is applied for quantization. Both algorithms are implemented in the [llm-compressor](https://github.com/vllm-project/llm-compressor) library. GPTQ used a 1% damping factor and 512 sequences sequences taken from Neural Magic's [LLM compression calibration dataset](https://huggingface.co/datasets/neuralmagic/LLM_compression_calibration). ## Deployment This model can be deployed efficiently using the [vLLM](https://docs.vllm.ai/en/latest/) backend, as shown in the example below. ```python from vllm import LLM, SamplingParams from transformers import AutoTokenizer model_id = "neuralmagic/Llama-3.2-3B-Instruct-quantized.w8a8" number_gpus = 1 max_model_len = 8192 sampling_params = SamplingParams(temperature=0.6, top_p=0.9, max_tokens=256) tokenizer = AutoTokenizer.from_pretrained(model_id) messages = [ {"role": "system", "content": "You are a pirate chatbot who always responds in pirate speak!"}, {"role": "user", "content": "Who are you?"}, ] prompts = tokenizer.apply_chat_template(messages, add_generation_prompt=True, tokenize=False) llm = LLM(model=model_id, tensor_parallel_size=number_gpus, max_model_len=max_model_len) outputs = llm.generate(prompts, sampling_params) generated_text = outputs[0].outputs[0].text print(generated_text) ``` vLLM aslo supports OpenAI-compatible serving. See the [documentation](https://docs.vllm.ai/en/latest/) for more details. ## Creation This model was created by using the [llm-compressor](https://github.com/vllm-project/llm-compressor) library as presented in the code snipet below. ```python from transformers import AutoTokenizer from datasets import load_dataset from llmcompressor.transformers import SparseAutoModelForCausalLM, oneshot from llmcompressor.modifiers.quantization import GPTQModifier, SmoothQuantModifier model_id = "meta-llama/Llama-3.2-3B-Instruct" num_samples = 512 max_seq_len = 8192 tokenizer = AutoTokenizer.from_pretrained(model_id) def preprocess_fn(example): return {"text": tokenizer.apply_chat_template(example["messages"], add_generation_prompt=False, tokenize=False)} ds = load_dataset("neuralmagic/LLM_compression_calibration", split="train") ds = ds.shuffle().select(range(num_samples)) ds = ds.map(preprocess_fn) recipe = [ SmoothQuantModifier( smoothing_strength=0.7, mappings=[ [["re:.*q_proj", "re:.*k_proj", "re:.*v_proj"], "re:.*input_layernorm"], [["re:.*gate_proj", "re:.*up_proj"], "re:.*post_attention_layernorm"], [["re:.*down_proj"], "re:.*up_proj"], ], ), GPTQModifier( sequential=True, targets="Linear", scheme="W8A8", ignore=["lm_head"], dampening_frac=0.01, observer="mse", ) ] model = SparseAutoModelForCausalLM.from_pretrained( model_id, device_map="auto", ) oneshot( model=model, dataset=ds, recipe=recipe, max_seq_length=max_seq_len, num_calibration_samples=num_samples, ) model.save_pretrained("Llama-3.2-3B-Instruct-quantized.w8a8") ``` ## Evaluation The model was evaluated on MMLU, ARC-Challenge, GSM-8K, Hellaswag, Winogrande and TruthfulQA. Evaluation was conducted using the Neural Magic fork of [lm-evaluation-harness](https://github.com/neuralmagic/lm-evaluation-harness/tree/llama_3.1_instruct) (branch llama_3.1_instruct) and the [vLLM](https://docs.vllm.ai/en/stable/) engine. This version of the lm-evaluation-harness includes versions of MMLU, ARC-Challenge and GSM-8K that match the prompting style of [Meta-Llama-3.1-Instruct-evals](https://huggingface.co/datasets/meta-llama/Meta-Llama-3.1-8B-Instruct-evals). ### Accuracy #### Open LLM Leaderboard evaluation scores
Benchmark | Llama-3.2-3B-Instruct | Llama-3.2-3B-Instruct-quantized.w8a8 (this model) | Recovery |
MMLU (5-shot) | 62.98 | 62.75 | 99.6% |
MMLU (CoT, 0-shot) | 65.40 | 65.05 | 99.5% |
ARC Challenge (0-shot) | 77.13 | 76.45 | 99.1% |
GSM-8K (CoT, 8-shot, strict-match) | 77.94 | 77.56 | 99.5% |
Hellaswag (10-shot) | 73.62 | 73.63 | 100.0% |
Winogrande (5-shot) | 71.11 | 71.90 | 101.1% |
TruthfulQA (0-shot, mc2) | 51.47 | 51.38 | 98.4% |
Average | 68.52 | 68.39 | 99.81% |