test_stage: obcq_modifiers: LogarithmicEqualizationModifier: mappings: - - ['re:.*q_proj', 're:.*k_proj', 're:.*v_proj'] - re:.*input_layernorm - - ['re:.*gate_proj', 're:.*up_proj'] - re:.*post_attention_layernorm - - ['re:.*down_proj'] - re:.*up_proj QuantizationModifier: ignore: [LlamaRotaryEmbedding, LlamaRMSNorm, SiLUActivation, model.layers.30.mlp.down_proj, model.layers.1.mlp.down_proj, model.layers.0.mlp.down_proj, model.layers.4.mlp.down_proj, MatMulOutput_QK, MatMulOutput_PV, MatMulLeftInput_QK, MatMulLeftInput_PV, MatMulRightInput_QK, MatMulRightInput_PV, QuantizableMatMul] post_oneshot_calibration: true scheme_overrides: Linear: weights: {num_bits: 8, symmetric: true, strategy: channel} Embedding: input_activations: null weights: {num_bits: 8, symmetric: false} SparseGPTModifier: sparsity: 0.0 block_size: 128 sequential_update: false quantize: true percdamp: 0.01 prunen: 0 prunem: 0 targets: [model.layers.0, model.layers.1, model.layers.2, model.layers.3, model.layers.4, model.layers.5, model.layers.6, model.layers.7, model.layers.8, model.layers.9, model.layers.10, model.layers.11, model.layers.12, model.layers.13, model.layers.14, model.layers.15, model.layers.16, model.layers.17, model.layers.18, model.layers.19, model.layers.20, model.layers.21, model.layers.22, model.layers.23, model.layers.24, model.layers.25, model.layers.26, model.layers.27, model.layers.28, model.layers.29, model.layers.30, model.layers.31] target_ids: [attention_mask, position_ids]