--- license: mit base_model: facebook/w2v-bert-2.0 tags: - generated_from_trainer datasets: - common_voice_17_0 metrics: - wer model-index: - name: w2v-bert-2.0-tigre-colab-CV17.0-v2 results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: common_voice_17_0 type: common_voice_17_0 config: tig split: test args: tig metrics: - name: Wer type: wer value: 0.43169398907103823 --- # w2v-bert-2.0-tigre-colab-CV17.0-v2 This model is a fine-tuned version of [facebook/w2v-bert-2.0](https://huggingface.co/facebook/w2v-bert-2.0) on the common_voice_17_0 dataset. It achieves the following results on the evaluation set: - Loss: 1.6193 - Wer: 0.4317 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.15 - training_steps: 2000 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:--------:|:----:|:---------------:|:------:| | 6.7881 | 13.7931 | 200 | 0.9737 | 0.6175 | | 0.1599 | 27.5862 | 400 | 1.2407 | 0.5310 | | 0.0256 | 41.3793 | 600 | 1.3566 | 0.4781 | | 0.0036 | 55.1724 | 800 | 1.5251 | 0.4554 | | 0.0058 | 68.9655 | 1000 | 1.4813 | 0.4699 | | 0.0023 | 82.7586 | 1200 | 1.5533 | 0.4435 | | 0.0001 | 96.5517 | 1400 | 1.5861 | 0.4372 | | 0.0001 | 110.3448 | 1600 | 1.6056 | 0.4362 | | 0.0001 | 124.1379 | 1800 | 1.6159 | 0.4326 | | 0.0001 | 137.9310 | 2000 | 1.6193 | 0.4317 | ### Framework versions - Transformers 4.42.4 - Pytorch 2.4.0+cu121 - Datasets 2.21.0 - Tokenizers 0.19.1