deep-rl_unit-1 / config.json
nclgbd's picture
Initial commit
5ff10fc verified
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7c11c1866440>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7c11c18664d0>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7c11c1866560>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7c11c18665f0>", "_build": "<function ActorCriticPolicy._build at 0x7c11c1866680>", "forward": "<function ActorCriticPolicy.forward at 0x7c11c1866710>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7c11c18667a0>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7c11c1866830>", "_predict": "<function ActorCriticPolicy._predict at 0x7c11c18668c0>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7c11c1866950>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7c11c18669e0>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7c11c1866a70>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7c11c197a600>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 1015808, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1729478185312897088, "learning_rate": 0.0003, "tensorboard_log": null, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAABWQhb5y54I+7YqDPv2WtL7nEUk8ul9GPQAAAAAAAAAAZtjhPZKZqjy6P1q+L+OSvauUCr3DXdC7AAAAAAAAAAAzEB8+jwtDO9v07DTlLCGx+TrfPFC/PLQAAIA/AACAP+DXfb4KxnM8zUmGPm/3UbzAQgi+XS5QPQAAAAAAAIA/aiioPgVgfz6nOLG8qSV2vkEe4T3LzBg7AAAAAAAAAABa2zO+oZGfvEw4B7x3kJW6LSANPltKbDsAAIA/AACAPwD6hD40nEu9joUoPkqq3bxhcbW+wY+evQAAgD8AAIA/BmpyPvQvgD0qfNG+YBFcvutqKb3myki8AAAAAAAAAAAmpYq9eS65P1q2I78JLiM9B/TWO/2CD74AAAAAAAAAAHMyNb50irO8rhFJOsMTyDgt0R8+2LuMuQAAgD8AAIA/mlzoPaZCoT+fcxU/znQLv4mw0z19z+I9AAAAAAAAAACanjq9oWUGP7Nq/T3X0PO+yBWnvA5WhD0AAAAAAAAAAIArIr72Z028i7fgvM/wWru7Ibg9vX0yPAAAgD8AAIA/xoY2vugchbwTPN67jLlGusUY9D18Rx87AACAPwAAgD+aTTY96NN6P9JULj7/2yS/E/oiPXiFWT0AAAAAAAAAAMB2uD32GFq64vBptvOxq7C11Ry7o+mLNQAAAAAAAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWV/gsAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQHDVv1DjR2OMAWyUS+mMAXSUR0CaI/hpg1FZdX2UKGgGR0BxfbIvJzT4aAdLzmgIR0CaJdGPxQSBdX2UKGgGR0Bx/+VRk3CLaAdNJAFoCEdAmiYrIcR15nV9lChoBkdAcH+cHGCI12gHS/loCEdAmib4d+5OJ3V9lChoBkdAblLESdvsJWgHS9FoCEdAmidNWU8mr3V9lChoBkdAcdAKmKqGUWgHTSABaAhHQJon+wJPZZl1fZQoaAZHQADHHNorWiFoB0vCaAhHQJopRAkcCHR1fZQoaAZHQHHdxm9QGfRoB0v1aAhHQJopsUfxMFl1fZQoaAZHQG+TvvKEFntoB0vlaAhHQJop073fygB1fZQoaAZHQG6t3ZoPCl9oB0vdaAhHQJoqLHKfWc11fZQoaAZHQHLBDWCmMwVoB01vAWgIR0CaKohlDneSdX2UKGgGR0BxQ+N+9allaAdL4mgIR0CaKzzP8hs7dX2UKGgGR0BxD4mjTKDDaAdL92gIR0CaK1pu/DcedX2UKGgGR0Bc3lmrbQC0aAdN6ANoCEdAmit5HmRvFXV9lChoBkdAcTG+BYmsvWgHTR4BaAhHQJor/fDUExJ1fZQoaAZHQG+JkIX0oSdoB0vhaAhHQJosxKnNxER1fZQoaAZHQHAhb/sE7nxoB0vQaAhHQJotVa3Zwn91fZQoaAZHQHKAphvze41oB0vraAhHQJotaKNyYHB1fZQoaAZHQGBzQmVqveRoB03oA2gIR0CaLdeNT987dX2UKGgGR0BxYDqD9OynaAdL4WgIR0CaLhfzz3AVdX2UKGgGR0BfjbVOKwY+aAdN6ANoCEdAmi/qPbO/tnV9lChoBkdAbzHBl+Vkc2gHS8hoCEdAmi/o/7iyZHV9lChoBkdAcQ+GMXJo02gHS+JoCEdAmjAx+BpYcXV9lChoBkdAcHkpNKyv92gHS+ZoCEdAmjBri++M63V9lChoBkdAcVLq5byH22gHS75oCEdAmjCM14xDcHV9lChoBkdActbhTfixV2gHTQ0BaAhHQJow+qtHQQd1fZQoaAZHQHBHvIjnmq5oB007AWgIR0CaMSKVII4VdX2UKGgGR0BxvienQ6ZIaAdL+WgIR0CaMYRGtp22dX2UKGgGR0BvN7oZAIIGaAdL7mgIR0CaMfyEL6UJdX2UKGgGR0BwLHfAKv3baAdL9WgIR0CaMhLW7OE/dX2UKGgGR0BwYOq//NqyaAdL6mgIR0CaMwpbUwztdX2UKGgGR0BvfHBYV6/qaAdL1GgIR0CaM2X668QJdX2UKGgGR0Bwnl0PpY9xaAdL6GgIR0CaM3Y1YQrddX2UKGgGR0Bw85jUd7v5aAdL6mgIR0CaNCwrUb1idX2UKGgGR0BxE2sHSncdaAdL12gIR0CaNZG4I8hcdX2UKGgGR0BuEYvBacI7aAdL62gIR0CaNivQWvbHdX2UKGgGR0BwQ5YdQwbmaAdL22gIR0CaNkKNhmXgdX2UKGgGR0Bw4q53C9AYaAdL6WgIR0CaNmtapxWDdX2UKGgGR0BwlJWkrPMTaAdL4GgIR0CaNo0wJw85dX2UKGgGR0Byro1IiC8OaAdL22gIR0CaNtoCuEEldX2UKGgGR0Bww6tr9EThaAdLwWgIR0CaN04aP0ZndX2UKGgGR0BtyQ9RrJr+aAdL6mgIR0CaN3Et/WlNdX2UKGgGR0BxrY01qFh5aAdNfwFoCEdAmje+QU5+6XV9lChoBkdAcPkmwJPZZmgHS9xoCEdAmjftZ3cHnnV9lChoBkdAcU9mfGuLaWgHS9BoCEdAmjkbfLs8gnV9lChoBkdAcM7t29tdiWgHS9FoCEdAmjkS83++/XV9lChoBkdAck4HkcS5AmgHTSIBaAhHQJo5L++/QBx1fZQoaAZHQHCxwyylenhoB0vIaAhHQJo68mzByjp1fZQoaAZHQHFjNAcDKYBoB003AWgIR0CaO5ZzxPO6dX2UKGgGR0BsTF+Zw4sFaAdL12gIR0CaPHzZ6D5CdX2UKGgGR0BwPbub7TDwaAdL8WgIR0CaPXVv/BFedX2UKGgGR0ByDTP7el9CaAdL82gIR0CaPeu/UONHdX2UKGgGR0Bxxr987ZFoaAdL12gIR0CaPr9QoCuEdX2UKGgGR0Bzi7LcKw6iaAdNBAFoCEdAmj7LO3UhFHV9lChoBkdAcH00x/NJOGgHTQMBaAhHQJo/13qzJIV1fZQoaAZHQHBJz8UEgW9oB0vtaAhHQJo/6UbDMvB1fZQoaAZHQHEDX6/IsAhoB0vgaAhHQJpBM53kgfV1fZQoaAZHQHL4ptvXK8toB00ZAWgIR0CaRAjnFHawdX2UKGgGR0BvBF4zJp35aAdL32gIR0CaRTTx5LRKdX2UKGgGR0BwspELH+6zaAdL8WgIR0CaRxHtnf2sdX2UKGgGR0Bx5QS39aUzaAdNxgFoCEdAmkfCAH3UQXV9lChoBkdAcaCschkiEGgHS8xoCEdAmke8P8Q7LnV9lChoBkdAb87rqMWGh2gHS/xoCEdAmkin9zfaYnV9lChoBkdAb8+EtdzGP2gHS+JoCEdAmklu/UONHnV9lChoBkdAbtHO1OTJQ2gHS+JoCEdAmkl+9eyAx3V9lChoBkdAb18piI+GGmgHS9JoCEdAmkoT/Q0GeXV9lChoBkdAcb5DjBEa2mgHS9VoCEdAmkxPWhAWznV9lChoBkdAXs6j2zv7WWgHTegDaAhHQJpM5Jvo/zJ1fZQoaAZHQHNVw7xNIsloB02fAWgIR0CaTeM4cWCVdX2UKGgGR0Bu3rgjyFwlaAdL5mgIR0CaTwEoOQQudX2UKGgGR0BwSQq0+kgwaAdL4mgIR0CaT3t9x6v8dX2UKGgGR0Bvyd7a7EpBaAdL9mgIR0CaUCfwqiGndX2UKGgGR0ByX7GZNO/MaAdNAAFoCEdAmlFNW6shgXV9lChoBkdAcmB4BFNL12gHS/VoCEdAmlGrvLHMlnV9lChoBkdAcGyF23azvGgHTbICaAhHQJpSsRsdkrh1fZQoaAZHQHBrUkWykbhoB0vkaAhHQJpUkk1Mue11fZQoaAZHQG9E5X+2mYVoB0vXaAhHQJpVLNVzZHx1fZQoaAZHQG5tRzJZGKBoB0vgaAhHQJpWs8ox59p1fZQoaAZHQHHTUVzp5eJoB00zAWgIR0CaVuS9ugpSdX2UKGgGR0Bx1oP1+RYBaAdL0GgIR0CaV3eiSJTEdX2UKGgGR0BkWyONo8ISaAdN6ANoCEdAmleEnPVurXV9lChoBkdAcSgGVRk3CWgHS+BoCEdAmllEEHMUy3V9lChoBkdAbQPI+W4Vh2gHS9doCEdAmllZbMX7+HV9lChoBkdAcGdc3VCoj2gHS9loCEdAmlp9MoMKC3V9lChoBkdAV6ytzS1E3WgHTegDaAhHQJpbf8wYced1fZQoaAZHQHAJRjnV5KRoB0vaaAhHQJpcZNh3JPt1fZQoaAZHQGgDvHtF8XxoB02rAWgIR0CaXo6I3zczdX2UKGgGR0BzDDXcxj8UaAdNBgFoCEdAml6py2hIv3V9lChoBkdAcPoMKCxu9GgHS+FoCEdAml7zGLk0anV9lChoBkdAcAxgdwNsnGgHS9loCEdAml9HGwRoRXV9lChoBkdAcHzBuGbkO2gHS/doCEdAml+YL9deIHV9lChoBkdAMj4xQBPsRmgHS7NoCEdAml/BQ79ycXV9lChoBkdAZnsiosI3SGgHTegDaAhHQJpgP3PAwf11fZQoaAZHQEn8ZiNKh+RoB0vAaAhHQJphN4eLehx1fZQoaAZHQHDJAoLG7z1oB00pAWgIR0CaYcwwCbMHdX2UKGgGR0ByBt++dsi0aAdNDAFoCEdAmmKBnWattHV9lChoBkdAX1UJLM9r42gHTegDaAhHQJpjKtyPuG91fZQoaAZHQHCFzP8hs69oB00DAWgIR0CaZQ/3WWhRdX2UKGgGR0Bwu9UbT+efaAdL1mgIR0CaZYtihFmWdX2UKGgGR0BwsWIRAbADaAdLy2gIR0CaZdoLG7z1dWUu"}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 310, "observation_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVdgIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoCIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoESiWCAAAAAAAAAABAQEBAQEBAZRoFUsIhZRoGXSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBEoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaAtLCIWUaBl0lFKUjARoaWdolGgRKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgLSwiFlGgZdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_shape": [8], "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.discrete.Discrete'>", ":serialized:": "gAWV2wAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCmMBWR0eXBllGgOjApfbnBfcmFuZG9tlE51Yi4=", "n": "4", "start": "0", "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "n_steps": 2048, "gamma": 0.99, "gae_lambda": 0.95, "ent_coef": 0.0, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 10, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVrQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUaACMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFowEZnVuY5SMDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVrQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUaACMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFowEZnVuY5SMDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-6.1.85+-x86_64-with-glibc2.35 # 1 SMP PREEMPT_DYNAMIC Thu Jun 27 21:05:47 UTC 2024", "Python": "3.10.12", "Stable-Baselines3": "2.0.0a5", "PyTorch": "2.4.1+cu121", "GPU Enabled": "True", "Numpy": "1.26.4", "Cloudpickle": "3.1.0", "Gymnasium": "0.28.1", "OpenAI Gym": "0.25.2"}}