--- tags: - image-classification - timm - generated_from_trainer datasets: - beans metrics: - accuracy model_index: - name: timm-resnet18-beans-test-2 results: - task: name: Image Classification type: image-classification dataset: name: beans type: beans args: default metric: name: Accuracy type: accuracy value: 0.5789473684210527 base_model: resnet18 --- # timm-resnet18-beans-test-2 This model is a fine-tuned version of [resnet18](https://huggingface.co/resnet18) on the beans dataset. It achieves the following results on the evaluation set: - Loss: 1.3225 - Accuracy: 0.5789 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.001 - train_batch_size: 4 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - training_steps: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.2601 | 0.02 | 5 | 2.8349 | 0.5113 | | 1.8184 | 0.04 | 10 | 1.3225 | 0.5789 | ### Framework versions - Transformers 4.9.1 - Pytorch 1.9.0 - Datasets 1.11.1.dev0 - Tokenizers 0.10.3