File size: 2,069 Bytes
c2bc5c0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
---
tags:
- summarization
- generated_from_trainer
metrics:
- rouge
model-index:
- name: pegasus-x-base-finetuned-multi-news
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# pegasus-x-base-finetuned-multi-news

This model is a fine-tuned version of [google/pegasus-x-base](https://huggingface.co/google/pegasus-x-base) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 2.3695
- Rouge1: 39.3711
- Rouge2: 13.3688
- Rougel: 22.2825
- Rougelsum: 33.911

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 5.6e-05
- train_batch_size: 4
- eval_batch_size: 4
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 7

### Training results

| Training Loss | Epoch | Step | Validation Loss | Rouge1  | Rouge2  | Rougel  | Rougelsum |
|:-------------:|:-----:|:----:|:---------------:|:-------:|:-------:|:-------:|:---------:|
| 2.7281        | 1.0   | 625  | 2.3958          | 37.1778 | 12.486  | 21.2186 | 31.8237   |
| 2.4474        | 2.0   | 1250 | 2.3748          | 37.9969 | 12.951  | 21.7277 | 32.5926   |
| 2.3396        | 3.0   | 1875 | 2.3739          | 38.8944 | 13.3746 | 22.1289 | 33.5442   |
| 2.2637        | 4.0   | 2500 | 2.3645          | 38.2964 | 13.048  | 21.9356 | 32.8345   |
| 2.2019        | 5.0   | 3125 | 2.3699          | 38.8395 | 13.1676 | 22.0546 | 33.4517   |
| 2.1603        | 6.0   | 3750 | 2.3641          | 39.3608 | 13.5131 | 22.3133 | 33.8639   |
| 2.1346        | 7.0   | 4375 | 2.3695          | 39.3711 | 13.3688 | 22.2825 | 33.911    |


### Framework versions

- Transformers 4.28.1
- Pytorch 2.0.0+cu118
- Datasets 2.11.0
- Tokenizers 0.13.3