# LS-LLaMA: Label Supervised LLaMA Finetuning
[![PWC](https://img.shields.io/endpoint.svg?url=https://paperswithcode.com/badge/label-supervised-llama-finetuning/named-entity-recognition-on-conll03-4)](https://paperswithcode.com/sota/named-entity-recognition-on-conll03-4?p=label-supervised-llama-finetuning) [![PWC](https://img.shields.io/endpoint.svg?url=https://paperswithcode.com/badge/label-supervised-llama-finetuning/named-entity-recognition-on-ontonotes-5-0-1)](https://paperswithcode.com/sota/named-entity-recognition-on-ontonotes-5-0-1?p=label-supervised-llama-finetuning)
## Usage Our implementation currently supports the following sequence classification benchmarks: 1. SST2 (2 classes) / SST5 (5 classes) 2. AGNews (4 classes) 3. Twitter Financial News Sentiment (twitterfin, 3 classes) and token classification benchmarks for named entity recognition (NER): CoNLL2003 and OntonotesV5. Commands for training LS-LLaMA and LS-unLLaMA on different tasks can follow the templates below: ```console foo@bar:~$ CUDA_VISIBLE_DEVICES=0 python file_name.py dataset_name model_size ``` `file_name.py` can be one of `unllama_seq_clf.py`, `unllama_token_clf.py`, `llama_seq_clf.py`, and `llama_token_clf.py`, for training LS-LLaMA and LS-unLLaMA on sequence- and token-level classification. `dataset_name` can be one of `sst2`, `sst5`, `agnews`, `twitterfin`, `conll03`, and `ontonotesv5`. `model_size` can be `7b` or `13b`, corresponding to LLaMA-2-7B and LLaMA-2-13B. For example, the following command will train LS-unLLaMA based on LLaMA-2-7B on AGNews for sequence classification: ```console foo@bar:~$ CUDA_VISIBLE_DEVICES=0 python unllama_seq_clf.py agnews 7b ``` ## Implementations Load Pretrained Models ```python from transformers import AutoTokenizer from modeling_llama import ( LlamaForSequenceClassification, LlamaForTokenClassification, UnmaskingLlamaForSequenceClassification, UnmaskingLlamaForTokenClassification, ) model_id = 'meta-llama/Llama-2-7b' tokenizer = AutoTokenizer.from_pretrained(model_id) model = LlamaForSequenceClassification.from_pretrained(model_id).bfloat16() model = LlamaForTokenClassification.from_pretrained(model_id).bfloat16() model = UnmaskingLlamaForSequenceClassification.from_pretrained(model_id).bfloat16() model = UnmaskingLlamaForTokenClassification.from_pretrained(model_id).bfloat16() ``` For more usage, please refer to `unllama_seq_clf.py`, `unllama_token_clf.py`, `llama_seq_clf.py`, `llama_token_clf.py`. # Citation ``` @article{li2023label, title={Label supervised llama finetuning}, author={Li, Zongxi and Li, Xianming and Liu, Yuzhang and Xie, Haoran and Li, Jing and Wang, Fu-lee and Li, Qing and Zhong, Xiaoqin}, journal={arXiv preprint arXiv:2310.01208}, year={2023} } ```