--- license: mit pipeline_tag: text-generation ---

Llama-3-8B-Instruct-80K-QLoRA

[Data&Code]
We extend the context length of Llama-3-8B-Instruct to 80K using QLoRA and 3.5K long-context training data synthesized from GPT-4. The entire training cycle is super efficient, which takes 8 hours on a 8xA800 (80G) machine. Yet, the resulted model achieves remarkable performance on a series of downstream long-context evaluation benchmarks. # Evaluation All the following evaluation results can be reproduced following instructions [here](https://github.com/FlagOpen/FlagEmbedding/tree/master/Long_LLM/longllm_qlora). ## Needle in a Haystack We evaluate the model on the Needle-In-A-HayStack task using the official setting. The blue vertical line indicates the training context length, i.e. 80K. ## LongBench We evaluate the model on [LongBench](https://arxiv.org/abs/2308.14508) using 32K context length and the official prompt template. For [meta-llama/Meta-Llama-3-8B-Instruct](https://huggingface.co/meta-llama/Meta-Llama-3-8B-Instruct), we use 8K context length. |Model|Single-Doc QA|Multi-Doc QA|Summarization|Few-Shot Learning|Synthetic|Code|Avg| |:-:|:-:|:-:|:-:|:-:|:-:|:-:|:-:| |[meta-llama/Meta-Llama-3-8B-Instruct](https://huggingface.co/meta-llama/Meta-Llama-3-8B-Instruct)|37.33|36.04|26.83|**69.56**|37.75|53.24|43.20| |[gradientai/Llama-3-8B-Instruct-262k](https://huggingface.co/NousResearch/Yarn-Mistral-7b-128k)|37.29|31.20|26.18|67.25|44.25|**62.71**|43.73| |[Llama-3-8B-Instruct-80K-QLoRA]()|**43.57**|**43.07**|**28.93**|69.15|**48.50**|51.95|**47.19**| ## InfiniteBench We evaluate the model on [InfiniteBench](https://arxiv.org/pdf/2402.13718.pdf) using 80K context length and the official prompt template. The results of GPT-4 is copied from the [paper](https://arxiv.org/pdf/2402.13718.pdf). For [meta-llama/Meta-Llama-3-8B-Instruct](https://huggingface.co/meta-llama/Meta-Llama-3-8B-Instruct), we use 8K context length. |Model|LongBookQA Eng|LongBookSum Eng| |:-:|:-:|:-:| |GPT-4|22.22|14.73| |[meta-llama/Meta-Llama-3-8B-Instruct](https://huggingface.co/meta-llama/Meta-Llama-3-8B-Instruct)|7.00|**16.40**| |[gradientai/Llama-3-8B-Instruct-262k](https://huggingface.co/NousResearch/Yarn-Mistral-7b-128k)|20.30|10.34| |[Llama-3-8B-Instruct-80K-QLoRA]()|**30.92**|14.73| ## Topic Retrieval We evaluate the model on [Topic Retrieval](https://lmsys.org/blog/2023-06-29-longchat/) task with `[5,10,15,20,25,30,40,50,60,70]` topics. ## MMLU We evaluate the model's zero-shot performance on MMLU benchmark as a reflection of its short-context capability. |Model|STEM|Social Sciences|Humanities|Others|Avg| |:-:|:-:|:-:|:-:|:-:|:-:| |[Llama-2-7B-Chat](https://huggingface.co/meta-llama/Llama-2-7b-chat-hf)|35.92|54.37|51.74|51.42|47.22| |[Mistral-7B-v0.2-Instruct](https://huggingface.co/mistralai/Mistral-7B-Instruct-v0.2)|48.79|69.95|64.99|61.64|60.10| |[meta-llama/Meta-Llama-3-8B-Instruct](https://huggingface.co/meta-llama/Meta-Llama-3-8B-Instruct)|**53.87**|**75.66**|69.44|**69.75**|**65.91**| |[gradientai/Llama-3-8B-Instruct-262k](https://huggingface.co/NousResearch/Yarn-Mistral-7b-128k)|52.10|73.26|67.15|**69.80**|64.34| |[Llama-3-8B-Instruct-80K-QLoRA]()|53.10|73.24|67.32|68.79|64.44| # Environment ```bash torch==2.2.2 flash_attn==2.5.6 transformers==4.39.3 peft==0.10.0 ``` # Usage ```python import json import torch from transformers import AutoModelForCausalLM, AutoTokenizer from peft import PeftModel model_id = "meta-llama/Meta-Llama-3-8B-Instruct" peft_id = "namespace-Pt/Llama-3-8B-Instruct-80K-QLoRA" torch_dtype = torch.bfloat16 # place the model on GPU device_map = {"": "cuda"} tokenizer = AutoTokenizer.from_pretrained(model_id) base_model = AutoModelForCausalLM.from_pretrained( model_id, torch_dtype=torch.bfloat16, device_map=device_map, attn_implementation="flash_attention_2", # NOTE: expand rope base rope_theta=200e6, ) model = PeftModel.from_pretrained( base_model, peft_id, torch_dtype=torch.bfloat16, device_map=device_map, ) # NOTE: merge LoRA weights model = model.merge_and_unload().eval() with torch.no_grad(): # short context messages = [{"role": "user", "content": "Tell me about yourself."}] inputs = tokenizer.apply_chat_template(messages, tokenize=True, add_generation_prompt=True, return_tensors="pt", return_dict=True).to("cuda") outputs = model.generate(**inputs, max_new_tokens=50)[:, inputs["input_ids"].shape[1]:] print(f"Input Length: {inputs['input_ids'].shape[1]}") print(f"Output: {tokenizer.decode(outputs[0])}") # long context with open("data/narrativeqa.json", encoding="utf-8") as f: example = json.load(f) messages = [{"role": "user", "content": example["context"]}] inputs = tokenizer.apply_chat_template(messages, tokenize=True, add_generation_prompt=True, return_tensors="pt", return_dict=True).to("cuda") outputs = model.generate(**inputs, do_sample=False, top_p=1, temperature=1, max_new_tokens=20)[:, inputs["input_ids"].shape[1]:] print("*"*20) print(f"Input Length: {inputs['input_ids'].shape[1]}") print(f"Answers: {example['answer']}") print(f"Prediction: {tokenizer.decode(outputs[0])}") ``` You may observe messages like: `This is a friendly reminder - the current text generation call will exceed the model's predefined maximum length (8192). Depending on the model, you may observe exceptions, performance degradation, or nothing at all.` or `Setting pad_token_id to eos_token_id:128001 for open-end generation`. They do not matter. Just ignore them.