---
license: mit
pipeline_tag: text-generation
---
We extend the context length of Llama-3-8B-Instruct to 80K using QLoRA and 3.5K long-context training data synthesized from GPT-4. The entire training cycle is super efficient, which takes 8 hours on a 8xA800 (80G) machine. Yet, the resulted model achieves remarkable performance on a series of downstream long-context evaluation benchmarks.
# Evaluation
All the following evaluation results can be reproduced following instructions [here](https://github.com/FlagOpen/FlagEmbedding/tree/master/Long_LLM/activation_beacon/new/docs/llama3-8b-instruct-qlora-80k.md).
## Needle in a Haystack
We evaluate the model on the Needle-In-A-HayStack task using the official setting.
## LongBench
We evaluate the model on [LongBench](https://arxiv.org/abs/2308.14508) using 32K context length and the official prompt template. For [meta-llama/Meta-Llama-3-8B-Instruct](https://huggingface.co/meta-llama/Meta-Llama-3-8B-Instruct), we use 8K context length.
|Model|Single-Doc QA|Multi-Doc QA|Summarization|Few-Shot Learning|
|:-:|:-:|:-:|:-:|:-:|
|[meta-llama/Meta-Llama-3-8B-Instruct](https://huggingface.co/meta-llama/Meta-Llama-3-8B-Instruct)|37.33|36.04|26.83|69.56|
|[gradientai/Llama-3-8B-Instruct-262k](https://huggingface.co/NousResearch/Yarn-Mistral-7b-128k)|37.29|31.20|26.18|67.25|
|[Llama-3-8B-Instruct-80K-QLoRA]()|43.57|43.07|28.93|69.15|
## InfiniteBench
We evaluate the model on [InfiniteBench](https://arxiv.org/pdf/2402.13718.pdf) using 80K context length and the official prompt template. The results of GPT4 is copied from the [paper](https://arxiv.org/pdf/2402.13718.pdf). For [meta-llama/Meta-Llama-3-8B-Instruct](https://huggingface.co/meta-llama/Meta-Llama-3-8B-Instruct), we use 8K context length.
|Model|LongBookQA Eng|
|:-:|:-:|
|GPT4|22.22|
|[meta-llama/Meta-Llama-3-8B-Instruct](https://huggingface.co/meta-llama/Meta-Llama-3-8B-Instruct)|7.00|
|[gradientai/Llama-3-8B-Instruct-262k](https://huggingface.co/NousResearch/Yarn-Mistral-7b-128k)|20.30|
|[Llama-3-8B-Instruct-80K-QLoRA]()|30.92|
## Topic Retrieval
We evaluate the model on [Topic Retrieval](https://lmsys.org/blog/2023-06-29-longchat/) task with `[5,10,15,20,25,30,40,50,60,70]` topics.
## MMLU
We evaluate the model's zero-shot performance on MMLU benchmark as a reflection of its short-context capability.
|Model|STEM|Social Sciences|Humanities|Others|Avg|
|:-:|:-:|:-:|:-:|:-:|:-:|
|[meta-llama/Meta-Llama-3-8B-Instruct](https://huggingface.co/meta-llama/Meta-Llama-3-8B-Instruct)|53.87|75.66|69.44|69.75|65.91|
|[gradientai/Llama-3-8B-Instruct-262k](https://huggingface.co/NousResearch/Yarn-Mistral-7b-128k)|52.10|73.26|67.15|69.80|64.34|
|[Llama-3-8B-Instruct-80K-QLoRA]()|53.10|73.24|67.32|68.79|64.44|
# Environment
```bash
torch==2.2.2
flash_attn==2.5.6
transformers==4.39.3
peft==0.10.0
```
# Usage
```python
import json
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer
from peft import PeftModel
model_id = "meta-llama/Meta-Llama-3-8B-Instruct"
peft_id = "namespace-Pt/Llama-3-8B-Instruct-80K-QLoRA"
torch_dtype = torch.bfloat16
# place the model on GPU
device_map = {"": "cuda"}
tokenizer = AutoTokenizer.from_pretrained(model_id)
base_model = AutoModelForCausalLM.from_pretrained(
model_id,
torch_dtype=torch.bfloat16,
device_map=device_map,
attn_implementation="flash_attention_2",
# NOTE: expand rope base
rope_theta=200e6,
max_position_embeddings=81920,
)
model = PeftModel.from_pretrained(
base_model,
peft_id,
torch_dtype=torch.bfloat16,
device_map=device_map,
)
# NOTE: merge LoRA weights
model = model.merge_and_unload().eval()
with torch.no_grad():
# short context
messages = [{"role": "user", "content": "Tell me about yourself."}]
inputs = tokenizer.apply_chat_template(messages, tokenize=True, add_generation_prompt=True, return_tensors="pt", return_dict=True).to("cuda")
outputs = model.generate(**inputs, max_new_tokens=50)[:, inputs["input_ids"].shape[1]:]
print(f"Input Length: {inputs['input_ids'].shape[1]}")
print(f"Output: {tokenizer.decode(outputs[0])}")
# long context
with open("data/narrativeqa.json", encoding="utf-8") as f:
example = json.load(f)
messages = [{"role": "user", "content": example["context"]}]
inputs = tokenizer.apply_chat_template(messages, tokenize=True, add_generation_prompt=True, return_tensors="pt", return_dict=True).to("cuda")
outputs = model.generate(**inputs, do_sample=False, top_p=1, temperature=1, max_new_tokens=20)[:, inputs["input_ids"].shape[1]:]
print("*"*20)
print(f"Input Length: {inputs['input_ids'].shape[1]}")
print(f"Answers: {example['answer']}")
print(f"Prediction: {tokenizer.decode(outputs[0])}")
```