mysticbeing
commited on
Commit
•
298b7f4
1
Parent(s):
089f622
Create README.md
Browse files
README.md
ADDED
@@ -0,0 +1,272 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
tags:
|
3 |
+
- fp8
|
4 |
+
- vllm
|
5 |
+
language:
|
6 |
+
- en
|
7 |
+
- de
|
8 |
+
- fr
|
9 |
+
- it
|
10 |
+
- pt
|
11 |
+
- hi
|
12 |
+
- es
|
13 |
+
- th
|
14 |
+
pipeline_tag: text-generation
|
15 |
+
license: llama3.1
|
16 |
+
base_model:
|
17 |
+
- nvidia/Llama-3.1-Nemotron-70B-Instruct-HF
|
18 |
+
---
|
19 |
+
# Llama-3.1-Nemotron-70B-Instruct-HF-FP8-DYNAMIC
|
20 |
+
|
21 |
+
## Model Overview
|
22 |
+
- **Model Architecture:** Meta-Llama-3.1
|
23 |
+
- **Input:** Text
|
24 |
+
- **Output:** Text
|
25 |
+
- **Model Optimizations:**
|
26 |
+
- **Weight quantization:** FP8
|
27 |
+
- **Activation quantization:** FP8
|
28 |
+
- **Intended Use Cases:** Intended for commercial and research use in multiple languages. Similarly to [
|
29 |
+
Llama-3.1-Nemotron-70B-Instruct-HF](https://huggingface.co/nvidia/Llama-3.1-Nemotron-70B-Instruct-HF), this models is intended for assistant-like chat.
|
30 |
+
- **Out-of-scope:** Use in any manner that violates applicable laws or regulations (including trade compliance laws). Use in languages other than English.
|
31 |
+
- **Release Date:** 10/31/2024
|
32 |
+
- **Version:** 1.0
|
33 |
+
- **License(s):** [llama3.1](https://huggingface.co/meta-llama/Meta-Llama-3.1-8B/blob/main/LICENSE)
|
34 |
+
- **Model Developers:** mysticbeing
|
35 |
+
- **Method used to quantize the weights (quant_method)** compressed-tensors
|
36 |
+
- **Weights format** float-quantized
|
37 |
+
- **Architecture** LlamaForCausalLM
|
38 |
+
- **Attention heads** 64
|
39 |
+
- **KV heads** 8
|
40 |
+
- **Hidden Activation** [Sigmoid Linear Unit (SiLU)](https://pytorch.org/docs/stable/generated/torch.nn.SiLU.html)
|
41 |
+
|
42 |
+
## Terms of use
|
43 |
+
|
44 |
+
By accessing this model, you are agreeing to the LLama 3.1 terms and conditions of the [license](https://github.com/meta-llama/llama-models/blob/main/models/llama3_1/LICENSE), [acceptable use policy](https://github.com/meta-llama/llama-models/blob/main/models/llama3_1/USE_POLICY.md) and [Meta’s privacy policy](https://www.facebook.com/privacy/policy/)
|
45 |
+
|
46 |
+
## Model Details
|
47 |
+
|
48 |
+
|
49 |
+
## Description:
|
50 |
+
|
51 |
+
Quantized version of [Llama-3.1-Nemotron-70B-Instruct-HF](https://huggingface.co/nvidia/Llama-3.1-Nemotron-70B-Instruct-HF) with the updated 8 KV-heads.
|
52 |
+
It achieves an average score of [TBD] on the [OpenLLM](https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard) benchmark (version 1), whereas the unquantized model achieves 86.79.
|
53 |
+
|
54 |
+
[Base model - Llama-3.1-Nemotron-70B-Instruct-HF](https://huggingface.co/nvidia/Llama-3.1-Nemotron-70B-Instruct-HF) description:
|
55 |
+
-
|
56 |
+
|
57 |
+
Llama-3.1-Nemotron-70B-Instruct-HF is a large language model customized by NVIDIA to improve the helpfulness of LLM generated responses to user queries.
|
58 |
+
|
59 |
+
|
60 |
+
Llama-3.1-Nemotron-70B-Instruct-HF model reaches [Arena Hard](https://github.com/lmarena/arena-hard-auto) of 85.0, [AlpacaEval 2 LC](https://tatsu-lab.github.io/alpaca_eval/) of 57.6 and [GPT-4-Turbo MT-Bench](https://github.com/lm-sys/FastChat/pull/3158) of 8.98, which are known to be predictive of [LMSys Chatbot Arena Elo](https://huggingface.co/spaces/lmsys/chatbot-arena-leaderboard)
|
61 |
+
|
62 |
+
As of 1 Oct 2024, this model is #1 on all three automatic alignment benchmarks (verified tab for AlpacaEval 2 LC), edging out strong frontier models such as GPT-4o and Claude 3.5 Sonnet.
|
63 |
+
|
64 |
+
As of Oct 24th, 2024 the model has Elo Score of 1267(+-7), rank 9 and style controlled rank of 26 on [ChatBot Arena leaderboard](https://lmarena.ai/?leaderboard).
|
65 |
+
|
66 |
+
This model was trained using RLHF (specifically, REINFORCE), [Llama-3.1-Nemotron-70B-Reward](https://huggingface.co/nvidia/Llama-3.1-Nemotron-70B-Reward) and [HelpSteer2-Preference prompts](https://huggingface.co/datasets/nvidia/HelpSteer2) on a Llama-3.1-70B-Instruct model as the initial policy.
|
67 |
+
|
68 |
+
See details at [https://arxiv.org/abs/2410.01257](https://arxiv.org/abs/2410.01257) - as a preview, this model can correctly the question
|
69 |
+
```How many r in strawberry?``` without specialized prompting or additional reasoning tokens:
|
70 |
+
|
71 |
+
```
|
72 |
+
Let's count the "R"s in "Strawberry":
|
73 |
+
|
74 |
+
1. S
|
75 |
+
2. T
|
76 |
+
3. R
|
77 |
+
4. A
|
78 |
+
5. W
|
79 |
+
6. B
|
80 |
+
7. E
|
81 |
+
8. R
|
82 |
+
9. R
|
83 |
+
10. Y
|
84 |
+
|
85 |
+
There are **3** "R"s in the word "Strawberry".
|
86 |
+
```
|
87 |
+
|
88 |
+
Note: This model is a demonstration of our techniques for improving helpfulness in general-domain instruction following. It has not been tuned for performance in specialized domains such as math.
|
89 |
+
|
90 |
+
|
91 |
+
### Model Description
|
92 |
+
|
93 |
+
- **Quantized (FP8-DYNAMIC) from model:** [Llama-3.1-Nemotron-70B-Instruct-HF](https://huggingface.co/nvidia/Llama-3.1-Nemotron-70B-Instruct-HF)
|
94 |
+
- **Model type:** Transformer
|
95 |
+
- **License:** [llama3.1]
|
96 |
+
|
97 |
+
## Uses
|
98 |
+
|
99 |
+
Primary Intended Uses:
|
100 |
+
|
101 |
+
General-Domain Instruction Following
|
102 |
+
|
103 |
+
The model is designed for general-purpose instruction following and dialogue tasks
|
104 |
+
Optimized specifically for helpfulness in responses
|
105 |
+
Focuses on generating coherent, factually-correct, and customizable responses
|
106 |
+
|
107 |
+
|
108 |
+
Research and Development
|
109 |
+
|
110 |
+
|
111 |
+
Serves as a demonstration of NVIDIA's techniques for improving model helpfulness
|
112 |
+
Can be used by researchers studying instruction-following capabilities
|
113 |
+
Provides a benchmark for comparing alignment techniques
|
114 |
+
|
115 |
+
Subject to LLama 3.1 license terms and conditions
|
116 |
+
Must adhere to Meta's acceptable use policy and privacy policy
|
117 |
+
Maximum input of 128k tokens and output of 4k tokens
|
118 |
+
|
119 |
+
## How to Get Started with the Model
|
120 |
+
|
121 |
+
Use the code below to get started with the model.
|
122 |
+
|
123 |
+
### Use with vLLM
|
124 |
+
|
125 |
+
This model can be deployed efficiently using the [vLLM](https://docs.vllm.ai/en/latest/) backend, as shown in the example below.
|
126 |
+
|
127 |
+
```python
|
128 |
+
from vllm import LLM, SamplingParams
|
129 |
+
from transformers import AutoTokenizer
|
130 |
+
|
131 |
+
MODEL_ID = "mysticbeing/Llama-3.1-Nemotron-70B-Instruct-HF-FP8-DYNAMIC"
|
132 |
+
N_GPUS = 8
|
133 |
+
MAX_MODEL_LEN = 4096
|
134 |
+
MAX_TOKENS = 1024
|
135 |
+
|
136 |
+
sampling_params = SamplingParams(temperature=0.7, top_p=0.9, max_tokens=MAX_TOKENS)
|
137 |
+
|
138 |
+
tokenizer = AutoTokenizer.from_pretrained(MODEL_ID)
|
139 |
+
|
140 |
+
messages = [
|
141 |
+
{"role": "system", "content": "You are a helpful assistant."},
|
142 |
+
{"role": "user", "content": "How many r in strawberry?"},
|
143 |
+
]
|
144 |
+
|
145 |
+
prompts = tokenizer.apply_chat_template(messages, add_generation_prompt=True, tokenize=False)
|
146 |
+
|
147 |
+
llm = LLM(model=MODEL_ID, tensor_parallel_size=N_GPUS, max_model_len=MAX_MODEL_LEN)
|
148 |
+
|
149 |
+
outputs = llm.generate(prompts, sampling_params)
|
150 |
+
|
151 |
+
generated_text = outputs[0].outputs[0].text
|
152 |
+
print(generated_text)
|
153 |
+
```
|
154 |
+
|
155 |
+
```
|
156 |
+
Let's count the "R"s in "Strawberry":
|
157 |
+
|
158 |
+
1. S
|
159 |
+
2. T
|
160 |
+
3. R
|
161 |
+
4. A
|
162 |
+
5. W
|
163 |
+
6. B
|
164 |
+
7. E
|
165 |
+
8. R
|
166 |
+
9. R
|
167 |
+
10. Y
|
168 |
+
|
169 |
+
There are **3** "R"s in the word "Strawberry".
|
170 |
+
```
|
171 |
+
|
172 |
+
vLLM also supports OpenAI-compatible serving. See the [documentation](https://docs.vllm.ai/en/latest/) for more details.
|
173 |
+
|
174 |
+
|
175 |
+
|
176 |
+
### Out-of-Scope Use
|
177 |
+
|
178 |
+
Any use not complying with LLama 3.1 license
|
179 |
+
|
180 |
+
Applications violating Meta's acceptable use policy
|
181 |
+
|
182 |
+
Uses conflicting with Meta's privacy policy
|
183 |
+
|
184 |
+
Critical Safety Applications
|
185 |
+
|
186 |
+
Applications requiring high reliability or safety guarantees
|
187 |
+
|
188 |
+
Applications where errors could lead to harm or safety issues
|
189 |
+
|
190 |
+
Autonomous Decision Making
|
191 |
+
|
192 |
+
The model is designed to be helpful in responses, not to make independent decisions
|
193 |
+
|
194 |
+
Applications requiring autonomous action without human oversight
|
195 |
+
|
196 |
+
Real-time Processing Requirements
|
197 |
+
|
198 |
+
Applications needing ultra-low latency responses
|
199 |
+
|
200 |
+
|
201 |
+
## Evaluation
|
202 |
+
|
203 |
+
|
204 |
+
### Testing Data, Factors & Metrics
|
205 |
+
|
206 |
+
### Results
|
207 |
+
|
208 |
+
|
209 |
+
|
210 |
+
## Technical Specifications [optional]
|
211 |
+
|
212 |
+
### Model Architecture and Objective
|
213 |
+
|
214 |
+
## References(s):
|
215 |
+
|
216 |
+
* [FP8 Quantization: The Power of the Exponent](https://arxiv.org/abs/2208.09225)
|
217 |
+
* [Llama-3.1-Nemotron-70B-Instruct-HF](https://huggingface.co/nvidia/Llama-3.1-Nemotron-70B-Instruct-HF)
|
218 |
+
* [NeMo Aligner](https://arxiv.org/abs/2405.01481)
|
219 |
+
* [HelpSteer2-Preference](https://arxiv.org/abs/2410.01257)
|
220 |
+
* [HelpSteer2](https://arxiv.org/abs/2406.08673)
|
221 |
+
* [Introducing Llama 3.1: Our most capable models to date](https://ai.meta.com/blog/meta-llama-3-1/)
|
222 |
+
* [Meta's Llama 3.1 Webpage](https://www.llama.com/docs/model-cards-and-prompt-formats/llama3_1)
|
223 |
+
* [Meta's Llama 3.1 Model Card](https://github.com/meta-llama/llama-models/blob/main/models/llama3_1/MODEL_CARD.md)
|
224 |
+
|
225 |
+
|
226 |
+
## Model Architecture:
|
227 |
+
**Architecture Type:** Transformer <br>
|
228 |
+
**Network Architecture:** Llama 3.1 <br>
|
229 |
+
|
230 |
+
## Input:
|
231 |
+
**Input Type(s):** Text <br>
|
232 |
+
**Input Format:** String <br>
|
233 |
+
**Input Parameters:** One Dimensional (1D) <br>
|
234 |
+
**Other Properties Related to Input:** Max of 128k tokens<br>
|
235 |
+
|
236 |
+
## Output:
|
237 |
+
**Output Type(s):** Text <br>
|
238 |
+
**Output Format:** String <br>
|
239 |
+
**Output Parameters:** One Dimensional (1D) <br>
|
240 |
+
**Other Properties Related to Output:** Max of 4k tokens <br>
|
241 |
+
|
242 |
+
## Software
|
243 |
+
|
244 |
+
**Supported Operating System(s):** Linux <br>
|
245 |
+
|
246 |
+
## Model Version:
|
247 |
+
v1.0
|
248 |
+
|
249 |
+
# Training & Evaluation:
|
250 |
+
|
251 |
+
## Alignment methodology
|
252 |
+
* REINFORCE implemented in NeMo Aligner
|
253 |
+
|
254 |
+
# Inference:
|
255 |
+
**Engine:** [vLLM](https://github.com/vllm-project/vllm) <br>
|
256 |
+
**Test Hardware:** H100 (NVIDIA Hopper GPU Micro-architecture) <br>
|
257 |
+
|
258 |
+
|
259 |
+
## Citation [optional]
|
260 |
+
|
261 |
+
If you find this model useful, please cite the following works
|
262 |
+
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
|
263 |
+
|
264 |
+
**BibTeX:**
|
265 |
+
|
266 |
+
[More Information Needed]
|
267 |
+
|
268 |
+
|
269 |
+
## Model Card Authors [optional]
|
270 |
+
|
271 |
+
|
272 |
+
## Model Card Contact
|