msperka commited on
Commit
aa98849
1 Parent(s): 4bee244

msperka/aleph_bert-finetuned-ner

Browse files
Files changed (1) hide show
  1. README.md +92 -0
README.md ADDED
@@ -0,0 +1,92 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: apache-2.0
3
+ base_model: onlplab/alephbert-base
4
+ tags:
5
+ - generated_from_trainer
6
+ datasets:
7
+ - nemo_corpus
8
+ metrics:
9
+ - precision
10
+ - recall
11
+ - f1
12
+ - accuracy
13
+ model-index:
14
+ - name: aleph_bert-finetuned-ner
15
+ results:
16
+ - task:
17
+ name: Token Classification
18
+ type: token-classification
19
+ dataset:
20
+ name: nemo_corpus
21
+ type: nemo_corpus
22
+ config: flat_token
23
+ split: validation
24
+ args: flat_token
25
+ metrics:
26
+ - name: Precision
27
+ type: precision
28
+ value: 0.8333333333333334
29
+ - name: Recall
30
+ type: recall
31
+ value: 0.8262454434993924
32
+ - name: F1
33
+ type: f1
34
+ value: 0.8297742525930445
35
+ - name: Accuracy
36
+ type: accuracy
37
+ value: 0.9739268365222564
38
+ ---
39
+
40
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
41
+ should probably proofread and complete it, then remove this comment. -->
42
+
43
+ # aleph_bert-finetuned-ner
44
+
45
+ This model is a fine-tuned version of [onlplab/alephbert-base](https://huggingface.co/onlplab/alephbert-base) on the nemo_corpus dataset.
46
+ It achieves the following results on the evaluation set:
47
+ - Loss: 0.1408
48
+ - Precision: 0.8333
49
+ - Recall: 0.8262
50
+ - F1: 0.8298
51
+ - Accuracy: 0.9739
52
+
53
+ ## Model description
54
+
55
+ More information needed
56
+
57
+ ## Intended uses & limitations
58
+
59
+ More information needed
60
+
61
+ ## Training and evaluation data
62
+
63
+ More information needed
64
+
65
+ ## Training procedure
66
+
67
+ ### Training hyperparameters
68
+
69
+ The following hyperparameters were used during training:
70
+ - learning_rate: 2e-05
71
+ - train_batch_size: 8
72
+ - eval_batch_size: 8
73
+ - seed: 42
74
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
75
+ - lr_scheduler_type: linear
76
+ - num_epochs: 3
77
+
78
+ ### Training results
79
+
80
+ | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
81
+ |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
82
+ | 0.042 | 1.0 | 618 | 0.1317 | 0.8198 | 0.8068 | 0.8132 | 0.9720 |
83
+ | 0.0185 | 2.0 | 1236 | 0.1367 | 0.8224 | 0.8214 | 0.8219 | 0.9714 |
84
+ | 0.0185 | 3.0 | 1854 | 0.1408 | 0.8333 | 0.8262 | 0.8298 | 0.9739 |
85
+
86
+
87
+ ### Framework versions
88
+
89
+ - Transformers 4.35.2
90
+ - Pytorch 2.0.1+cpu
91
+ - Datasets 2.15.0
92
+ - Tokenizers 0.15.0