File size: 2,381 Bytes
9059152 bb3734d 9059152 53c19f6 9059152 1578462 bb3734d 1578462 447b976 9059152 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 |
---
license: apache-2.0
thumbnail: https://huggingface.co/mrm8488/distilroberta-finetuned-financial-news-sentiment-analysis/resolve/main/logo_fin.png
tags:
- generated_from_trainer
- financial
- stocks
- sentiment
widget:
- text: "Operating profit totaled EUR 9.4 mn , down from EUR 11.7 mn in 2004 ."
datasets:
- financial_phrasebank
metrics:
- accuracy
model-index:
- name: distilRoberta-financial-sentiment
results:
- task:
name: Text Classification
type: text-classification
dataset:
name: financial_phrasebank
type: financial_phrasebank
args: sentences_allagree
metrics:
- name: Accuracy
type: accuracy
value: 0.9823008849557522
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
<div style="text-align:center;width:250px;height:250px;">
<img src="https://huggingface.co/mrm8488/distilroberta-finetuned-financial-news-sentiment-analysis/resolve/main/logo_fin.png" alt="logo">
</div>
# DistilRoberta-financial-sentiment
This model is a fine-tuned version of [distilroberta-base](https://huggingface.co/distilroberta-base) on the financial_phrasebank dataset.
It achieves the following results on the evaluation set:
- Loss: 0.1116
- Accuracy: 0.9823
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 5
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:--------:|
| No log | 1.0 | 255 | 0.1670 | 0.9646 |
| 0.209 | 2.0 | 510 | 0.2290 | 0.9558 |
| 0.209 | 3.0 | 765 | 0.2044 | 0.9558 |
| 0.0326 | 4.0 | 1020 | 0.1116 | 0.9823 |
| 0.0326 | 5.0 | 1275 | 0.1127 | 0.9779 |
### Framework versions
- Transformers 4.10.2
- Pytorch 1.9.0+cu102
- Datasets 1.12.1
- Tokenizers 0.10.3
|