Transformers
GGUF
Japanese
English
qwen
Inference Endpoints
imatrix
mradermacher commited on
Commit
8c58b31
1 Parent(s): 64ca3cc

auto-patch README.md

Browse files
Files changed (1) hide show
  1. README.md +76 -0
README.md CHANGED
@@ -1,6 +1,82 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
  <!-- ### quantize_version: 2 -->
2
  <!-- ### output_tensor_quantised: 1 -->
3
  <!-- ### convert_type: hf -->
4
  <!-- ### vocab_type: -->
5
  <!-- ### tags: nicoboss -->
6
  weighted/imatrix quants of https://huggingface.co/rinna/nekomata-14b-instruction
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ base_model: rinna/nekomata-14b-instruction
3
+ datasets:
4
+ - databricks/databricks-dolly-15k
5
+ - kunishou/databricks-dolly-15k-ja
6
+ - izumi-lab/llm-japanese-dataset
7
+ language:
8
+ - ja
9
+ - en
10
+ library_name: transformers
11
+ license: other
12
+ license_link: https://github.com/QwenLM/Qwen/blob/main/Tongyi%20Qianwen%20LICENSE%20AGREEMENT
13
+ license_name: tongyi-qianwen-license-agreement
14
+ quantized_by: mradermacher
15
+ tags:
16
+ - qwen
17
+ ---
18
+ ## About
19
+
20
  <!-- ### quantize_version: 2 -->
21
  <!-- ### output_tensor_quantised: 1 -->
22
  <!-- ### convert_type: hf -->
23
  <!-- ### vocab_type: -->
24
  <!-- ### tags: nicoboss -->
25
  weighted/imatrix quants of https://huggingface.co/rinna/nekomata-14b-instruction
26
+
27
+ <!-- provided-files -->
28
+ static quants are available at https://huggingface.co/mradermacher/nekomata-14b-instruction-GGUF
29
+ ## Usage
30
+
31
+ If you are unsure how to use GGUF files, refer to one of [TheBloke's
32
+ READMEs](https://huggingface.co/TheBloke/KafkaLM-70B-German-V0.1-GGUF) for
33
+ more details, including on how to concatenate multi-part files.
34
+
35
+ ## Provided Quants
36
+
37
+ (sorted by size, not necessarily quality. IQ-quants are often preferable over similar sized non-IQ quants)
38
+
39
+ | Link | Type | Size/GB | Notes |
40
+ |:-----|:-----|--------:|:------|
41
+ | [GGUF](https://huggingface.co/mradermacher/nekomata-14b-instruction-i1-GGUF/resolve/main/nekomata-14b-instruction.i1-IQ1_S.gguf) | i1-IQ1_S | 4.5 | for the desperate |
42
+ | [GGUF](https://huggingface.co/mradermacher/nekomata-14b-instruction-i1-GGUF/resolve/main/nekomata-14b-instruction.i1-IQ1_M.gguf) | i1-IQ1_M | 4.7 | mostly desperate |
43
+ | [GGUF](https://huggingface.co/mradermacher/nekomata-14b-instruction-i1-GGUF/resolve/main/nekomata-14b-instruction.i1-IQ2_XXS.gguf) | i1-IQ2_XXS | 5.0 | |
44
+ | [GGUF](https://huggingface.co/mradermacher/nekomata-14b-instruction-i1-GGUF/resolve/main/nekomata-14b-instruction.i1-IQ2_XS.gguf) | i1-IQ2_XS | 5.3 | |
45
+ | [GGUF](https://huggingface.co/mradermacher/nekomata-14b-instruction-i1-GGUF/resolve/main/nekomata-14b-instruction.i1-IQ2_S.gguf) | i1-IQ2_S | 5.5 | |
46
+ | [GGUF](https://huggingface.co/mradermacher/nekomata-14b-instruction-i1-GGUF/resolve/main/nekomata-14b-instruction.i1-IQ2_M.gguf) | i1-IQ2_M | 5.8 | |
47
+ | [GGUF](https://huggingface.co/mradermacher/nekomata-14b-instruction-i1-GGUF/resolve/main/nekomata-14b-instruction.i1-Q2_K.gguf) | i1-Q2_K | 5.9 | IQ3_XXS probably better |
48
+ | [GGUF](https://huggingface.co/mradermacher/nekomata-14b-instruction-i1-GGUF/resolve/main/nekomata-14b-instruction.i1-IQ3_XXS.gguf) | i1-IQ3_XXS | 6.4 | lower quality |
49
+ | [GGUF](https://huggingface.co/mradermacher/nekomata-14b-instruction-i1-GGUF/resolve/main/nekomata-14b-instruction.i1-IQ3_XS.gguf) | i1-IQ3_XS | 6.7 | |
50
+ | [GGUF](https://huggingface.co/mradermacher/nekomata-14b-instruction-i1-GGUF/resolve/main/nekomata-14b-instruction.i1-IQ3_S.gguf) | i1-IQ3_S | 6.9 | beats Q3_K* |
51
+ | [GGUF](https://huggingface.co/mradermacher/nekomata-14b-instruction-i1-GGUF/resolve/main/nekomata-14b-instruction.i1-Q3_K_S.gguf) | i1-Q3_K_S | 6.9 | IQ3_XS probably better |
52
+ | [GGUF](https://huggingface.co/mradermacher/nekomata-14b-instruction-i1-GGUF/resolve/main/nekomata-14b-instruction.i1-IQ3_M.gguf) | i1-IQ3_M | 7.5 | |
53
+ | [GGUF](https://huggingface.co/mradermacher/nekomata-14b-instruction-i1-GGUF/resolve/main/nekomata-14b-instruction.i1-Q3_K_M.gguf) | i1-Q3_K_M | 7.8 | IQ3_S probably better |
54
+ | [GGUF](https://huggingface.co/mradermacher/nekomata-14b-instruction-i1-GGUF/resolve/main/nekomata-14b-instruction.i1-IQ4_XS.gguf) | i1-IQ4_XS | 7.9 | |
55
+ | [GGUF](https://huggingface.co/mradermacher/nekomata-14b-instruction-i1-GGUF/resolve/main/nekomata-14b-instruction.i1-Q3_K_L.gguf) | i1-Q3_K_L | 8.1 | IQ3_M probably better |
56
+ | [GGUF](https://huggingface.co/mradermacher/nekomata-14b-instruction-i1-GGUF/resolve/main/nekomata-14b-instruction.i1-Q4_0.gguf) | i1-Q4_0 | 8.3 | fast, low quality |
57
+ | [GGUF](https://huggingface.co/mradermacher/nekomata-14b-instruction-i1-GGUF/resolve/main/nekomata-14b-instruction.i1-Q4_K_S.gguf) | i1-Q4_K_S | 8.7 | optimal size/speed/quality |
58
+ | [GGUF](https://huggingface.co/mradermacher/nekomata-14b-instruction-i1-GGUF/resolve/main/nekomata-14b-instruction.i1-Q4_K_M.gguf) | i1-Q4_K_M | 9.5 | fast, recommended |
59
+ | [GGUF](https://huggingface.co/mradermacher/nekomata-14b-instruction-i1-GGUF/resolve/main/nekomata-14b-instruction.i1-Q5_K_S.gguf) | i1-Q5_K_S | 10.1 | |
60
+ | [GGUF](https://huggingface.co/mradermacher/nekomata-14b-instruction-i1-GGUF/resolve/main/nekomata-14b-instruction.i1-Q5_K_M.gguf) | i1-Q5_K_M | 11.0 | |
61
+ | [GGUF](https://huggingface.co/mradermacher/nekomata-14b-instruction-i1-GGUF/resolve/main/nekomata-14b-instruction.i1-Q6_K.gguf) | i1-Q6_K | 12.4 | practically like static Q6_K |
62
+
63
+ Here is a handy graph by ikawrakow comparing some lower-quality quant
64
+ types (lower is better):
65
+
66
+ ![image.png](https://www.nethype.de/huggingface_embed/quantpplgraph.png)
67
+
68
+ And here are Artefact2's thoughts on the matter:
69
+ https://gist.github.com/Artefact2/b5f810600771265fc1e39442288e8ec9
70
+
71
+ ## FAQ / Model Request
72
+
73
+ See https://huggingface.co/mradermacher/model_requests for some answers to
74
+ questions you might have and/or if you want some other model quantized.
75
+
76
+ ## Thanks
77
+
78
+ I thank my company, [nethype GmbH](https://www.nethype.de/), for letting
79
+ me use its servers and providing upgrades to my workstation to enable
80
+ this work in my free time. Additional thanks to [@nicoboss](https://huggingface.co/nicoboss) for giving me access to his hardware for calculating the imatrix for these quants.
81
+
82
+ <!-- end -->