--- base_model: werty1248/Mistral-Nemo-NT-Ko-12B-sft datasets: - 4DR1455/finance_questions - Aratako/Synthetic-JP-Conversations-Magpie-Nemotron-4-10k - Aratako/Synthetic-JP-EN-Coding-Dataset-Magpie-69k - Aratako/Synthetic-Japanese-Roleplay-NSFW-Claude-3.5s-10.5k-formatted - BCCard/BCCard-Finance-Kor-QnA - CarrotAI/ko-code-alpaca-QA - ChuGyouk/AI_healthcare_QA_samples_Sonnet3.5 - DavidLanz/medical_instruction - Dusker/lawyer-llama - Gryphe/Sonnet3.5-Charcard-Roleplay - HAERAE-HUB/qarv-instruct-ko - HachiML/alpaca_jp_math - Magpie-Align/Magpie-Llama-3.1-Pro-MT-300K-v0.1 - Magpie-Align/Magpie-Qwen2-Pro-200K-Chinese - beomi/KoAlpaca-v1.1a - codefuse-ai/Evol-instruction-66k - frankminors123/belle-math-zh - gbharti/wealth-alpaca_lora - iam-ajaymeena/Self-Instruct-Japanese-Elzya-13B - jihye-moon/LawQA-Ko - jondurbin/gutenberg-dpo-v0.1 - junyeong-nero/kin_med_100K_edited - kyujinpy/KOR-OpenOrca-Platypus-v3 - lavita/medical-qa-datasets - microsoft/orca-math-word-problems-200k - neural-bridge/rag-dataset-12000 - p1atdev/ichikara-instruction - qiaojin/PubMedQA - shibing624/roleplay-zh-sharegpt-gpt4-data - team-hatakeyama-phase2/AutoMultiTurnByCalm3-22B-Corrected-reformatted - ymoslem/Law-StackExchange - zzunyang/LawQA_LawSee language: - en - ko - ja - zh library_name: transformers license: apache-2.0 quantized_by: mradermacher --- ## About static quants of https://huggingface.co/werty1248/Mistral-Nemo-NT-Ko-12B-sft weighted/imatrix quants are available at https://huggingface.co/mradermacher/Mistral-Nemo-NT-Ko-12B-sft-i1-GGUF ## Usage If you are unsure how to use GGUF files, refer to one of [TheBloke's READMEs](https://huggingface.co/TheBloke/KafkaLM-70B-German-V0.1-GGUF) for more details, including on how to concatenate multi-part files. ## Provided Quants (sorted by size, not necessarily quality. IQ-quants are often preferable over similar sized non-IQ quants) | Link | Type | Size/GB | Notes | |:-----|:-----|--------:|:------| | [GGUF](https://huggingface.co/mradermacher/Mistral-Nemo-NT-Ko-12B-sft-GGUF/resolve/main/Mistral-Nemo-NT-Ko-12B-sft.Q2_K.gguf) | Q2_K | 4.9 | | | [GGUF](https://huggingface.co/mradermacher/Mistral-Nemo-NT-Ko-12B-sft-GGUF/resolve/main/Mistral-Nemo-NT-Ko-12B-sft.IQ3_XS.gguf) | IQ3_XS | 5.4 | | | [GGUF](https://huggingface.co/mradermacher/Mistral-Nemo-NT-Ko-12B-sft-GGUF/resolve/main/Mistral-Nemo-NT-Ko-12B-sft.Q3_K_S.gguf) | Q3_K_S | 5.6 | | | [GGUF](https://huggingface.co/mradermacher/Mistral-Nemo-NT-Ko-12B-sft-GGUF/resolve/main/Mistral-Nemo-NT-Ko-12B-sft.IQ3_S.gguf) | IQ3_S | 5.7 | beats Q3_K* | | [GGUF](https://huggingface.co/mradermacher/Mistral-Nemo-NT-Ko-12B-sft-GGUF/resolve/main/Mistral-Nemo-NT-Ko-12B-sft.IQ3_M.gguf) | IQ3_M | 5.8 | | | [GGUF](https://huggingface.co/mradermacher/Mistral-Nemo-NT-Ko-12B-sft-GGUF/resolve/main/Mistral-Nemo-NT-Ko-12B-sft.Q3_K_M.gguf) | Q3_K_M | 6.2 | lower quality | | [GGUF](https://huggingface.co/mradermacher/Mistral-Nemo-NT-Ko-12B-sft-GGUF/resolve/main/Mistral-Nemo-NT-Ko-12B-sft.Q3_K_L.gguf) | Q3_K_L | 6.7 | | | [GGUF](https://huggingface.co/mradermacher/Mistral-Nemo-NT-Ko-12B-sft-GGUF/resolve/main/Mistral-Nemo-NT-Ko-12B-sft.IQ4_XS.gguf) | IQ4_XS | 6.9 | | | [GGUF](https://huggingface.co/mradermacher/Mistral-Nemo-NT-Ko-12B-sft-GGUF/resolve/main/Mistral-Nemo-NT-Ko-12B-sft.Q4_K_S.gguf) | Q4_K_S | 7.2 | fast, recommended | | [GGUF](https://huggingface.co/mradermacher/Mistral-Nemo-NT-Ko-12B-sft-GGUF/resolve/main/Mistral-Nemo-NT-Ko-12B-sft.Q4_K_M.gguf) | Q4_K_M | 7.6 | fast, recommended | | [GGUF](https://huggingface.co/mradermacher/Mistral-Nemo-NT-Ko-12B-sft-GGUF/resolve/main/Mistral-Nemo-NT-Ko-12B-sft.Q5_K_S.gguf) | Q5_K_S | 8.6 | | | [GGUF](https://huggingface.co/mradermacher/Mistral-Nemo-NT-Ko-12B-sft-GGUF/resolve/main/Mistral-Nemo-NT-Ko-12B-sft.Q5_K_M.gguf) | Q5_K_M | 8.8 | | | [GGUF](https://huggingface.co/mradermacher/Mistral-Nemo-NT-Ko-12B-sft-GGUF/resolve/main/Mistral-Nemo-NT-Ko-12B-sft.Q6_K.gguf) | Q6_K | 10.2 | very good quality | | [GGUF](https://huggingface.co/mradermacher/Mistral-Nemo-NT-Ko-12B-sft-GGUF/resolve/main/Mistral-Nemo-NT-Ko-12B-sft.Q8_0.gguf) | Q8_0 | 13.1 | fast, best quality | Here is a handy graph by ikawrakow comparing some lower-quality quant types (lower is better): ![image.png](https://www.nethype.de/huggingface_embed/quantpplgraph.png) And here are Artefact2's thoughts on the matter: https://gist.github.com/Artefact2/b5f810600771265fc1e39442288e8ec9 ## FAQ / Model Request See https://huggingface.co/mradermacher/model_requests for some answers to questions you might have and/or if you want some other model quantized. ## Thanks I thank my company, [nethype GmbH](https://www.nethype.de/), for letting me use its servers and providing upgrades to my workstation to enable this work in my free time.