--- license: apache-2.0 datasets: - squad_v2 - drop - mou3az/IT_QA-QG language: - en library_name: transformers tags: - IT purpose - General purpose metrics: - bertscore - accuracy - rouge --- # Model Card Base Model: facebook/bart-base Fine-tuned : using PEFT-LoRa Datasets : squad_v2, drop, mou3az/IT_QA-QG Task: Generating questions from context and answers Language: English # Loading the model ```python from peft import PeftModel, PeftConfig from transformers import AutoModelForSeq2SeqLM, AutoTokenizer HUGGING_FACE_USER_NAME = "mou3az" model_name = "IT-General_Question-Generation " peft_model_id = f"{HUGGING_FACE_USER_NAME}/{model_name}" config = PeftConfig.from_pretrained(peft_model_id) model = AutoModelForSeq2SeqLM.from_pretrained(config.base_model_name_or_path, return_dict=True, load_in_8bit=False, device_map='auto') QG_tokenizer = AutoTokenizer.from_pretrained(config.base_model_name_or_path) QG_model = PeftModel.from_pretrained(model, peft_model_id) ``` # At inference time ```python def get_question(context, answer): device = next(QG_model.parameters()).device input_text = f"Given the context '{context}' and the answer '{answer}', what question can be asked?" encoding = QG_tokenizer.encode_plus(input_text, padding=True, return_tensors="pt").to(device) output_tokens = QG_model.generate(**encoding, early_stopping=True, num_beams=5, num_return_sequences=1, no_repeat_ngram_size=2, max_length=100) out = QG_tokenizer.decode(output_tokens[0], skip_special_tokens=True).replace("question:", "").strip() return out ``` # Training parameters and hyperparameters The following were used during training: # For Lora: r=18 alpha=8 # For training arguments: gradient_accumulation_steps=24 per_device_train_batch_size=8 per_device_eval_batch_size=8 max_steps=1000 warmup_steps=50 weight_decay=0.05 learning_rate=3e-3 lr_scheduler_type="linear" # Training Results | Epoch | Optimization Step | Training Loss | Validation Loss | |-------|-------------------|---------------|-----------------| | 0.0 | 84 | 4.6426 | 4.704238 | | 3.0 | 252 | 1.5094 | 1.202135 | | 6.0 | 504 | 1.2677 | 1.146177 | | 9.0 | 756 | 1.2613 | 1.112074 | | 12.0 | 1000 | 1.1958 | 1.109059 | # Performance Metrics on Evaluation Set: Training Loss: 1.1.1958 Evaluation Loss: 1.109059 Bertscore: 0.8123 Rouge: 0.532144 Fuzzywizzy similarity: 0.74209