Update README.md
Browse files
README.md
CHANGED
@@ -30,21 +30,9 @@ metrics:
|
|
30 |
Language: English
|
31 |
|
32 |
|
33 |
-
# Performance Metrics on Evaluation Set:
|
34 |
-
|
35 |
-
Training Loss: 1.1.1958
|
36 |
-
|
37 |
-
Evaluation Loss: 1.109059
|
38 |
-
|
39 |
-
Bertscore: 0.82
|
40 |
-
|
41 |
-
Rouge: 0.56
|
42 |
-
|
43 |
-
Fuzzywizzy similarity: 0.75
|
44 |
-
|
45 |
-
|
46 |
# Loading the model
|
47 |
|
|
|
48 |
```python
|
49 |
from peft import PeftModel, PeftConfig
|
50 |
from transformers import AutoModelForSeq2SeqLM, AutoTokenizer
|
@@ -57,8 +45,10 @@ metrics:
|
|
57 |
QG_model = PeftModel.from_pretrained(model, peft_model_id)
|
58 |
```
|
59 |
|
|
|
60 |
# At inference time
|
61 |
|
|
|
62 |
```python
|
63 |
def get_question(context, answer):
|
64 |
device = next(QG_model.parameters()).device
|
@@ -71,8 +61,10 @@ metrics:
|
|
71 |
return out
|
72 |
```
|
73 |
|
|
|
74 |
# Training parameters and hyperparameters
|
75 |
|
|
|
76 |
The following were used during training:
|
77 |
|
78 |
# For Lora:
|
@@ -100,12 +92,28 @@ metrics:
|
|
100 |
|
101 |
lr_scheduler_type="linear"
|
102 |
|
|
|
103 |
# Training Results
|
104 |
|
|
|
105 |
| Epoch | Training Loss | Validation Loss |
|
106 |
|-------|---------------|-----------------|
|
107 |
| 0.0 | 4.6426 | 4.704238 |
|
108 |
| 3.0 | 1.5094 | 1.202135 |
|
109 |
| 6.0 | 1.2677 | 1.146177 |
|
110 |
| 9.0 | 1.2613 | 1.112074 |
|
111 |
-
| 12.0 | 1.1958 | 1.109059 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
30 |
Language: English
|
31 |
|
32 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
33 |
# Loading the model
|
34 |
|
35 |
+
|
36 |
```python
|
37 |
from peft import PeftModel, PeftConfig
|
38 |
from transformers import AutoModelForSeq2SeqLM, AutoTokenizer
|
|
|
45 |
QG_model = PeftModel.from_pretrained(model, peft_model_id)
|
46 |
```
|
47 |
|
48 |
+
|
49 |
# At inference time
|
50 |
|
51 |
+
|
52 |
```python
|
53 |
def get_question(context, answer):
|
54 |
device = next(QG_model.parameters()).device
|
|
|
61 |
return out
|
62 |
```
|
63 |
|
64 |
+
|
65 |
# Training parameters and hyperparameters
|
66 |
|
67 |
+
|
68 |
The following were used during training:
|
69 |
|
70 |
# For Lora:
|
|
|
92 |
|
93 |
lr_scheduler_type="linear"
|
94 |
|
95 |
+
|
96 |
# Training Results
|
97 |
|
98 |
+
|
99 |
| Epoch | Training Loss | Validation Loss |
|
100 |
|-------|---------------|-----------------|
|
101 |
| 0.0 | 4.6426 | 4.704238 |
|
102 |
| 3.0 | 1.5094 | 1.202135 |
|
103 |
| 6.0 | 1.2677 | 1.146177 |
|
104 |
| 9.0 | 1.2613 | 1.112074 |
|
105 |
+
| 12.0 | 1.1958 | 1.109059 |
|
106 |
+
|
107 |
+
|
108 |
+
# Performance Metrics on Evaluation Set:
|
109 |
+
|
110 |
+
|
111 |
+
Training Loss: 1.1.1958
|
112 |
+
|
113 |
+
Evaluation Loss: 1.109059
|
114 |
+
|
115 |
+
Bertscore: 0.82
|
116 |
+
|
117 |
+
Rouge: 0.56
|
118 |
+
|
119 |
+
Fuzzywizzy similarity: 0.75
|