--- license: apache-2.0 base_model: google/vit-base-patch16-224-in21k tags: - generated_from_trainer datasets: - image_folder metrics: - accuracy model-index: - name: vit-base-patch16-224-in21k-finetuned results: - task: name: Image Classification type: image-classification dataset: name: image_folder type: image_folder config: default split: train args: default metrics: - name: Accuracy type: accuracy value: 0.7057676232933965 --- # vit-base-patch16-224-in21k-finetuned This model is a fine-tuned version of [google/vit-base-patch16-224-in21k](https://huggingface.co/google/vit-base-patch16-224-in21k) on the image_folder dataset. It achieves the following results on the evaluation set: - Loss: 0.9803 - Accuracy: 0.7058 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 128 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.4887 | 1.0 | 224 | 0.9213 | 0.6776 | | 0.4969 | 2.0 | 449 | 0.9038 | 0.6927 | | 0.4095 | 3.0 | 673 | 0.9077 | 0.6977 | | 0.3344 | 4.0 | 898 | 0.9398 | 0.6989 | | 0.3055 | 5.0 | 1122 | 0.9803 | 0.7058 | | 0.2214 | 6.0 | 1347 | 1.0337 | 0.6953 | | 0.1575 | 7.0 | 1571 | 1.0642 | 0.6977 | | 0.1169 | 8.0 | 1796 | 1.0829 | 0.7030 | | 0.0917 | 9.0 | 2020 | 1.1121 | 0.7048 | | 0.0785 | 9.98 | 2240 | 1.1280 | 0.7052 | ### Framework versions - Transformers 4.36.0 - Pytorch 2.0.0 - Datasets 2.1.0 - Tokenizers 0.15.0