"""A simple, flexible implementation of a GPT model. Inspired by https://github.com/karpathy/minGPT/blob/master/mingpt/model.py """ from __future__ import annotations import math import warnings from typing import Any, Dict, List, Mapping, MutableMapping, Optional, Tuple, Union import torch import torch.nn as nn import torch.nn.functional as F from .attention import is_flash_v2_installed from .norm import NORM_CLASS_REGISTRY if is_flash_v2_installed(): try: from flash_attn import bert_padding from flash_attn.layers.rotary import RotaryEmbedding as DAILRotaryEmbedding except Exception as e: raise e from transformers import PreTrainedModel, PreTrainedTokenizerBase from transformers.modeling_outputs import BaseModelOutputWithPast, CausalLMOutputWithPast from transformers.models.llama.modeling_llama import LlamaDynamicNTKScalingRotaryEmbedding as HFDynamicNTKScalingRotaryEmbedding from transformers.models.llama.modeling_llama import LlamaLinearScalingRotaryEmbedding as HFLinearScalingRotaryEmbedding from transformers.models.llama.modeling_llama import LlamaRotaryEmbedding as HFRotaryEmbedding from .attention import attn_bias_shape, build_attn_bias, gen_slopes from .blocks import MPTBlock from .custom_embedding import SharedEmbedding from .ffn import build_ffn as build_ffn from .configuration_mpt import MPTConfig from .meta_init_context import init_empty_weights from .param_init_fns import generic_param_init_fn_, MODEL_INIT_REGISTRY from .act_ckpt import pass_on_block_idx, build_act_ckpt_mod_to_blocks, check_mapping_blocks_overlap import logging log = logging.getLogger(__name__) def gen_rotary_embedding(rope_head_dim: int, rope_impl: str, rope_theta: int, rope_dail_config: dict, rope_hf_config: dict, max_seq_len: int): if rope_impl == 'dail': return DAILRotaryEmbedding(dim=rope_head_dim, base=rope_theta, interleaved=False, scale_base=rope_dail_config['xpos_scale_base'] if rope_dail_config['type'] == 'xpos' else None, pos_idx_in_fp32=rope_dail_config['pos_idx_in_fp32'], device='cpu') elif rope_impl == 'hf': if rope_hf_config['type'] == 'no_scaling': return HFRotaryEmbedding(rope_head_dim, max_position_embeddings=max_seq_len, base=rope_theta, device='cpu') elif rope_hf_config['type'] == 'linear': return HFLinearScalingRotaryEmbedding(rope_head_dim, max_position_embeddings=max_seq_len, base=rope_theta, scaling_factor=rope_hf_config['factor'], device='cpu') elif rope_hf_config['type'] == 'dynamic': return HFDynamicNTKScalingRotaryEmbedding(rope_head_dim, max_position_embeddings=max_seq_len, base=rope_theta, scaling_factor=rope_hf_config['factor'], device='cpu') raise ValueError('rope_impl needs to be either dail or hf') def gen_attention_mask_in_length(sequence_id: Union[None, torch.Tensor], S: int, attn_uses_sequence_id: bool, attn_impl: str, attention_mask: Union[torch.Tensor, None]): """Generates the attention mask used for sequence masking in FA v2. Only supports sequence id based sparse attention for no attention masking or attention masking with right padding. In case of left padding: 1. Training with left padding is not supported in MPT (see https://github.com/mosaicml/llm-foundry/blob/1eecd4cb8e734499f77f6a35f657b8b20c0adfcb/llmfoundry/models/mpt/modeling_mpt.py#L407). 2. For generation with left padding, we only have a single sequence id per sample, so we don't need sequence id based sparse attention. Args: sequence_id (Union[None, torch.Tensor]): Tensor containing the sequence id for each token. Shape (batch_size, seq_len). S (int): Sequence length attn_uses_sequence_id (bool): Whether the attention uses sequence id based masking. attn_impl (str): Attention implementation. This function is only creates attention_mask_in_length for flash attention. attention_mask (Union[torch.Tensor, None]): Attention mask tensor of shape (batch_size, seq_len) Returns: attention_mask_in_length: (batch, seqlen), int, a nonzero number (e.g., 1, 2, 3, etc.) means length of concatenated sequence in b-th batch, and 0 means none. For example, if batch = 3 and seqlen = 6, the attention_mask_in_length is: ``` [ [2, 3, 0, 0, 0, 0], [3, 2, 0, 0, 0, 0], [6, 0, 0, 0, 0, 0] ] ``` , which refers to the 3D-attention mask: ``` [ [ [1, 0, 0, 0, 0, 0], [1, 1, 0, 0, 0, 0], [0, 0, 1, 0, 0, 0], [0, 0, 1, 1, 0, 0], [0, 0, 1, 1, 1, 0], [0, 0, 0, 0, 0, 1] ], [ [1, 0, 0, 0, 0, 0], [1, 1, 0, 0, 0, 0], [1, 1, 1, 0, 0, 0], [0, 0, 0, 1, 0, 0], [0, 0, 0, 1, 1, 0], [0, 0, 0, 0, 0, 1] ], [ [1, 0, 0, 0, 0, 0], [1, 1, 0, 0, 0, 0], [1, 1, 1, 0, 0, 0], [1, 1, 1, 1, 0, 0], [1, 1, 1, 1, 1, 0], [1, 1, 1, 1, 1, 1] ] ] ```. (The description above is taken verbatim from https://github.com/Dao-AILab/flash-attention/blob/9356a1c0389660d7e231ff3163c1ac17d9e3824a/flash_attn/bert_padding.py#L125 .) """ attention_mask_in_length = None if sequence_id is not None and attn_uses_sequence_id and (attn_impl == 'flash'): if attention_mask is not None and attention_mask[:, 0].sum() != attention_mask.shape[0]: raise NotImplementedError('Left padding is not supported with flash attention when attn_uses_sequence_id is set to True.') if S != sequence_id.shape[-1]: raise ValueError(f'Sequence length ({S}) does not match length of sequences in sequence_id ({sequence_id.shape[-1]}).') if attention_mask is not None: sequence_id = sequence_id.masked_fill(~attention_mask, 0) attention_mask_in_length = torch.nn.functional.one_hot(sequence_id) if attention_mask is not None: attention_mask_in_length = attention_mask_in_length.masked_fill(~attention_mask.unsqueeze(-1), 0) attention_mask_in_length = attention_mask_in_length.sum(dim=1) attention_mask_in_length = torch.nn.functional.pad(attention_mask_in_length, (0, S - attention_mask_in_length.shape[-1]), mode='constant', value=0) return attention_mask_in_length def gen_flash_attn_padding_info(bsz: int, S: int, past_key_len: int, device: torch.device, attention_mask_in_length: Optional[torch.Tensor]=None, attention_mask: Optional[torch.Tensor]=None): flash_attn_padding_info = {} if attention_mask_in_length is None: key_padding_mask = attention_mask if key_padding_mask is None: key_padding_mask = torch.ones((bsz, past_key_len + S), dtype=torch.bool, device=device) query_padding_mask = key_padding_mask[:, -S:] unpadding_function = bert_padding.unpad_input else: key_padding_mask = attention_mask_in_length query_padding_mask = attention_mask_in_length unpadding_function = bert_padding.unpad_input_for_concatenated_sequences _, indices_q, cu_seqlens_q, max_seqlen_q = unpadding_function(torch.empty(bsz, S, 1, device=device), query_padding_mask) _, indices_k, cu_seqlens_k, max_seqlen_k = unpadding_function(torch.empty(bsz, past_key_len + S, 1, device=device), key_padding_mask) _, indices_v, _, _ = unpadding_function(torch.empty(bsz, past_key_len + S, 1, device=device), key_padding_mask) flash_attn_padding_info['indices_q'] = indices_q flash_attn_padding_info['indices_k'] = indices_k flash_attn_padding_info['indices_v'] = indices_v flash_attn_padding_info['cu_seqlens_q'] = cu_seqlens_q flash_attn_padding_info['cu_seqlens_k'] = cu_seqlens_k flash_attn_padding_info['max_seqlen_q'] = max_seqlen_q flash_attn_padding_info['max_seqlen_k'] = max_seqlen_k return flash_attn_padding_info def apply_sequence_id(attn_bias: torch.Tensor, sequence_id: torch.LongTensor, max_seq_len: int) -> torch.Tensor: seq_len = sequence_id.shape[-1] if seq_len > max_seq_len: raise ValueError(f'sequence_id sequence length cannot exceed max_seq_len={max_seq_len}') attn_bias = attn_bias[..., :seq_len, :seq_len] cannot_attend = torch.logical_not(torch.eq(sequence_id.view(-1, seq_len, 1), sequence_id.view(-1, 1, seq_len))).unsqueeze(1) min_val = torch.finfo(attn_bias.dtype).min attn_bias = attn_bias.masked_fill(cannot_attend, min_val) return attn_bias class MPTPreTrainedModel(PreTrainedModel): config_class = MPTConfig base_model_prefix = 'model' _no_split_modules = ['MPTBlock'] def _fsdp_wrap_fn(self: Union[MPTModel, MPTForCausalLM], module: nn.Module) -> bool: return isinstance(module, MPTBlock) class MPTModel(MPTPreTrainedModel): def __init__(self, config: MPTConfig): config._validate_config() super().__init__(config) self.attn_impl = config.attn_config['attn_impl'] self.attn_uses_sequence_id = config.attn_config['attn_uses_sequence_id'] self.alibi = config.attn_config['alibi'] self.alibi_bias_max = config.attn_config['alibi_bias_max'] self.learned_pos_emb = config.learned_pos_emb if config.init_device == 'mixed': if dist.get_local_rank() == 0: config.init_device = 'cpu' else: config.init_device = 'meta' if config.norm_type.lower() not in NORM_CLASS_REGISTRY.keys(): norm_options = ' | '.join(NORM_CLASS_REGISTRY.keys()) raise NotImplementedError(f'Requested norm type ({config.norm_type}) is not implemented within this repo (Options: {norm_options}).') norm_class = NORM_CLASS_REGISTRY[config.norm_type.lower()] self.embedding_fraction = config.embedding_fraction self.wte = SharedEmbedding(config.vocab_size, config.d_model, device=config.init_device) if self.learned_pos_emb: self.wpe = torch.nn.Embedding(config.max_seq_len, config.d_model, device=config.init_device) self.emb_drop = nn.Dropout(config.emb_pdrop) self.blocks = nn.ModuleList([MPTBlock(device=config.init_device, **config.to_dict()) for _ in range(config.n_layers)]) for i, block in enumerate(self.blocks): block.block_idx = i block.max_block_idx = config.n_layers - 1 pass_on_block_idx(block) self.norm_f = norm_class(config.d_model, device=config.init_device) self.rope = config.attn_config['rope'] self.rope_impl = None if self.rope: self.rope_impl = config.attn_config['rope_impl'] self.rotary_embedding = gen_rotary_embedding(rope_head_dim=config.d_model // config.n_heads, rope_impl=self.rope_impl, rope_theta=config.attn_config['rope_theta'], rope_dail_config=config.attn_config['rope_dail_config'], rope_hf_config=config.attn_config['rope_hf_config'], max_seq_len=self.config.max_seq_len) if config.init_device != 'meta': log.info(f'We recommend using config.init_device="meta" with Composer + FSDP for faster initialization.') self.apply(self.param_init_fn) self.is_causal = True self._attn_bias_initialized = False self.attn_bias = None self.attn_bias_shape = attn_bias_shape(self.attn_impl, config.n_heads, config.max_seq_len, self.alibi, causal=self.is_causal, use_sequence_id=self.attn_uses_sequence_id) if config.no_bias: for module in self.modules(): if hasattr(module, 'bias') and isinstance(module.bias, nn.Parameter): log.info(f'Removing bias from module={module!r}.') module.register_parameter('bias', None) if hasattr(module, 'use_bias'): log.info(f'Setting use_bias=False for module={module!r}.') module.use_bias = False log.debug(self) log.debug(f"Using {self.config.init_config['name']} initialization.") def get_input_embeddings(self) -> Union[SharedEmbedding, nn.Embedding]: return self.wte def set_input_embeddings(self, value: Union[SharedEmbedding, nn.Embedding]) -> None: self.wte = value @torch.no_grad() def _attn_bias(self, device: torch.device, dtype: torch.dtype, attention_mask: Optional[torch.ByteTensor]=None, sequence_id: Optional[torch.LongTensor]=None) -> Tuple[Optional[torch.Tensor], Optional[torch.ByteTensor]]: if not self._attn_bias_initialized: if self.attn_bias_shape: self.attn_bias = torch.zeros(self.attn_bias_shape, device=device, dtype=dtype) self.attn_bias = build_attn_bias(self.attn_impl, self.attn_bias, self.config.n_heads, self.config.max_seq_len, causal=self.is_causal, alibi=self.alibi, alibi_bias_max=self.alibi_bias_max) self._attn_bias_initialized = True if self.attn_impl == 'flash': return (self.attn_bias, attention_mask) if self.attn_bias is not None: self.attn_bias = self.attn_bias.to(dtype=dtype, device=device) attn_bias = self.attn_bias if self.attn_uses_sequence_id and sequence_id is not None: assert isinstance(attn_bias, torch.Tensor) attn_bias = apply_sequence_id(attn_bias, sequence_id, self.config.max_seq_len) if attention_mask is not None: s_k = attention_mask.shape[-1] if attn_bias is None: attn_bias = torch.zeros((1, 1, 1, s_k), device=device, dtype=dtype) else: _s_k = max(0, attn_bias.size(-1) - s_k) attn_bias = attn_bias[:, :, :, _s_k:] min_val = torch.finfo(attn_bias.dtype).min attn_bias = attn_bias.masked_fill(~attention_mask.view(-1, 1, 1, s_k), min_val) return (attn_bias, attention_mask) def forward(self, input_ids: Optional[torch.LongTensor]=None, past_key_values: Optional[List[Tuple[torch.FloatTensor]]]=None, attention_mask: Optional[torch.ByteTensor]=None, sequence_id: Optional[torch.LongTensor]=None, return_dict: Optional[bool]=None, output_attentions: Optional[bool]=None, output_hidden_states: Optional[bool]=None, use_cache: Optional[bool]=None, inputs_embeds: Optional[torch.Tensor]=None) -> BaseModelOutputWithPast: return_dict = return_dict if return_dict is not None else self.config.return_dict use_cache = use_cache if use_cache is not None else self.config.use_cache if attention_mask is not None: attention_mask = attention_mask.bool() if not return_dict: raise NotImplementedError('return_dict False is not implemented yet for MPT') if output_attentions: if self.attn_impl != 'torch': raise NotImplementedError('output_attentions is not implemented for MPT when using attn_impl `flash`.') if self.training and attention_mask is not None and (attention_mask[:, 0].sum() != attention_mask.shape[0]): raise NotImplementedError('MPT does not support training with left padding.') if self.training: if self.attn_uses_sequence_id and sequence_id is None: raise ValueError('sequence_id is a required argument when MPT is configured with attn_uses_sequence_id=True ' + 'and the model is in train mode.') elif self.attn_uses_sequence_id is False and sequence_id is not None: warnings.warn('MPT received non-None input for `sequence_id` but is configured with attn_uses_sequence_id=False. ' + 'This input will be ignored. If you want the model to use `sequence_id`, set attn_uses_sequence_id to True.') if input_ids is not None and inputs_embeds is not None: raise ValueError('You cannot specify both input_ids and inputs_embeds.') elif input_ids is not None: bsz = input_ids.size(0) S = input_ids.size(1) x = self.wte(input_ids) input_device = input_ids.device elif inputs_embeds is not None: bsz = inputs_embeds.size(0) S = inputs_embeds.size(1) x = inputs_embeds input_device = inputs_embeds.device else: raise ValueError('You must specify input_ids or inputs_embeds') assert S <= self.config.max_seq_len, f'Cannot forward input with seq_len={S}, this model only supports seq_len<={self.config.max_seq_len}' rotary_emb_w_meta_info = None past_position = 0 if past_key_values is not None: if len(past_key_values) != self.config.n_layers: raise ValueError(f'past_key_values must provide a past_key_value for each attention ' + f'layer in the network (len(past_key_values)={len(past_key_values)!r}; self.config.n_layers={self.config.n_layers!r}).') past_position = past_key_values[0][0].size(1) if self.attn_impl == 'torch': past_position = past_key_values[0][0].size(3) if self.learned_pos_emb or self.rope: if self.learned_pos_emb and S + past_position > self.config.max_seq_len: raise ValueError(f'Cannot forward input with past sequence length {past_position} and current sequence length ' + f'{S + 1}, this model only supports total sequence length <= {self.config.max_seq_len}.') if self.learned_pos_emb or (self.rope and self.rope_impl == 'hf'): pos = torch.arange(past_position, S + past_position, dtype=torch.long, device=input_device).unsqueeze(0) if attention_mask is not None: pos = torch.clamp(pos - torch.cumsum((~attention_mask).to(torch.int32), dim=1)[:, past_position:], min=0) if self.learned_pos_emb: x = x + self.wpe(pos) elif self.rope and self.rope_impl == 'hf': rotary_emb_w_meta_info = {'impl': self.rope_impl, 'rotary_emb': self.rotary_embedding, 'offset_info': pos, 'seq_len': S + past_position} elif self.rope and self.rope_impl == 'dail': rotary_emb_w_meta_info = {'impl': self.rope_impl, 'rotary_emb': self.rotary_embedding, 'offset_info': past_position, 'seq_len': S + past_position} if self.embedding_fraction == 1: x = self.emb_drop(x) else: x_shrunk = x * self.embedding_fraction + x.detach() * (1 - self.embedding_fraction) assert isinstance(self.emb_drop, nn.Module) x = self.emb_drop(x_shrunk) attn_bias, attention_mask = self._attn_bias(device=x.device, dtype=torch.float32, attention_mask=attention_mask, sequence_id=sequence_id) attention_mask_in_length = gen_attention_mask_in_length(sequence_id=sequence_id, S=S, attn_uses_sequence_id=self.attn_uses_sequence_id, attn_impl=self.attn_impl, attention_mask=attention_mask) alibi_slopes = None if self.alibi and self.attn_impl == 'flash': alibi_slopes = gen_slopes(n_heads=self.config.n_heads, alibi_bias_max=self.alibi_bias_max, device=x.device, return_1d=True) presents = () if use_cache else None if use_cache and past_key_values is None: past_key_values = [() for _ in range(self.config.n_layers)] all_hidden_states = () if output_hidden_states else None all_self_attns = () if output_attentions else None flash_attn_padding_info = {} if self.attn_impl == 'flash': flash_attn_padding_info = gen_flash_attn_padding_info(bsz, S, past_position, x.device, attention_mask_in_length, attention_mask) for b_idx, block in enumerate(self.blocks): if output_hidden_states: assert all_hidden_states is not None all_hidden_states = all_hidden_states + (x,) past_key_value = past_key_values[b_idx] if past_key_values is not None else None x, attn_weights, present = block(x, past_key_value=past_key_value, attn_bias=attn_bias, rotary_emb_w_meta_info=rotary_emb_w_meta_info, attention_mask=attention_mask, is_causal=self.is_causal, output_attentions=bool(output_attentions), alibi_slopes=alibi_slopes, flash_attn_padding_info=flash_attn_padding_info) if presents is not None: presents += (present,) if output_attentions: assert all_self_attns is not None all_self_attns = all_self_attns + (attn_weights,) x = self.norm_f(x) if output_hidden_states: assert all_hidden_states is not None all_hidden_states = all_hidden_states + (x,) return BaseModelOutputWithPast(last_hidden_state=x, past_key_values=presents, hidden_states=all_hidden_states, attentions=all_self_attns) def param_init_fn(self, module: nn.Module) -> None: init_fn_name = self.config.init_config['name'] MODEL_INIT_REGISTRY[init_fn_name](module=module, n_layers=self.config.n_layers, d_model=self.config.d_model, **self.config.init_config) def fsdp_wrap_fn(self, module: nn.Module) -> bool: return _fsdp_wrap_fn(self, module) def activation_checkpointing_fn(self, module: nn.Module) -> bool: return isinstance(module, MPTBlock) class MPTForCausalLM(MPTPreTrainedModel): def __init__(self, config: MPTConfig): super().__init__(config) log.info(f'Instantiating an MPTForCausalLM model from {__file__}') self.transformer: MPTModel = MPTModel(config) self.lm_head = None if not config.tie_word_embeddings: self.lm_head = nn.Linear(config.d_model, config.vocab_size, bias=False, device=config.init_device) self.lm_head._fsdp_wrap = True for child in self.transformer.children(): if isinstance(child, torch.nn.ModuleList): continue if isinstance(child, torch.nn.Module): child._fsdp_wrap = True self.logit_scale = None if config.logit_scale is not None: logit_scale = config.logit_scale if isinstance(logit_scale, str): if logit_scale == 'inv_sqrt_d_model': logit_scale = 1 / math.sqrt(config.d_model) else: raise ValueError(f"logit_scale={logit_scale!r} is not recognized as an option; use numeric value or 'inv_sqrt_d_model'.") self.logit_scale = logit_scale def get_input_embeddings(self) -> Union[SharedEmbedding, nn.Embedding]: return self.transformer.get_input_embeddings() def set_input_embeddings(self, value: Union[SharedEmbedding, nn.Embedding]) -> None: self.transformer.set_input_embeddings(value) def get_output_embeddings(self) -> Union[SharedEmbedding, nn.Embedding, nn.Linear]: if self.lm_head is not None: return self.lm_head return self.transformer.get_input_embeddings() def set_output_embeddings(self, new_embeddings: Union[SharedEmbedding, nn.Embedding, nn.Linear]) -> None: if self.lm_head is not None: self.lm_head = new_embeddings else: if not isinstance(new_embeddings, (SharedEmbedding, nn.Embedding)): raise ValueError('new_embeddings must be an instance of SharedEmbedding ' + f'or nn.Embedding, but got {type(new_embeddings)}.') warnings.warn('Using `set_output_embeddings` to set the embedding layer of ' + 'MPTForCausalLM with tied weights. Given weights are tied, ' + 'using `set_input_embeddings` is recommended over using ' + '`set_output_embeddings`.') self.transformer.set_input_embeddings(new_embeddings) def tie_weights(self) -> None: if getattr(self.config, 'tie_word_embeddings', True): self.lm_head = None def set_decoder(self, decoder: MPTModel) -> None: self.transformer = decoder def get_decoder(self) -> MPTModel: return self.transformer def forward(self, input_ids: Optional[torch.LongTensor]=None, past_key_values: Optional[List[Tuple[torch.FloatTensor]]]=None, attention_mask: Optional[torch.ByteTensor]=None, sequence_id: Optional[torch.LongTensor]=None, labels: Optional[torch.LongTensor]=None, return_dict: Optional[bool]=None, output_attentions: Optional[bool]=None, output_hidden_states: Optional[bool]=None, use_cache: Optional[bool]=None, inputs_embeds: Optional[torch.FloatTensor]=None) -> CausalLMOutputWithPast: return_dict = return_dict if return_dict is not None else self.config.return_dict use_cache = use_cache if use_cache is not None else self.config.use_cache outputs = self.transformer(input_ids=input_ids, past_key_values=past_key_values, attention_mask=attention_mask, sequence_id=sequence_id, return_dict=return_dict, output_attentions=output_attentions, output_hidden_states=output_hidden_states, use_cache=use_cache, inputs_embeds=inputs_embeds) if self.lm_head is not None: logits = self.lm_head(outputs.last_hidden_state) else: out = outputs.last_hidden_state out = out.to(self.transformer.wte.weight.device) logits = self.transformer.wte(out, True) if self.logit_scale is not None: if self.logit_scale == 0: warnings.warn(f'Multiplying logits by self.logit_scale={self.logit_scale!r}. This will produce uniform (uninformative) outputs.') logits *= self.logit_scale loss = None if labels is not None: _labels = torch.roll(labels, shifts=-1) _labels[:, -1] = -100 loss = F.cross_entropy(logits.view(-1, logits.size(-1)), _labels.to(logits.device).view(-1)) return CausalLMOutputWithPast(loss=loss, logits=logits, past_key_values=outputs.past_key_values, hidden_states=outputs.hidden_states, attentions=outputs.attentions) def param_init_fn(self, module: nn.Module) -> None: init_fn_name = self.config.init_config['name'] MODEL_INIT_REGISTRY[init_fn_name](module=module, n_layers=self.config.n_layers, d_model=self.config.d_model, **self.config.init_config) def fsdp_wrap_fn(self, module: nn.Module) -> bool: return _fsdp_wrap_fn(self, module) def activation_checkpointing_fn(self, module: nn.Module) -> bool: """The MPT activation checkpointing (act ckpt) function. When `activation_checkpointing` in fsdp_config is set to true, this function will be called on all the modules in the FSDP wrapped model and determine whether a given module should be activation checkpointed. It checks the checkpointing target (`activation_checkpointing_target` in `model`) which can be specified as below: 1. null (or no such field): The whole MPTBlock will be activation checkpointed on all layers 2. a list of modules to act ckpt on all layers, e.g., activation_checkpointing_target: - grouped_query_attention - mptmlp 3. a dictionary of module name with target_blocks, e.g., activation_checkpointing_target: { "mptblock": target_blocks_1, "grouped_query_attention": target_blocks_2 } target_blocks (target_blocks_1, target_blocks_2 above) can be: - a single integer n: the first n transformer block will be activation checkpointed - a string of first-n, middle-m, last-k, range-i-j: the first n, the middle m, the last k, or the range [i, j) layers will be activation checkpointed. E.g, 'first-2, last-2' means the first 2 and last 2 transformer blocks will be activation checkpointed middle-m is range [start, end) where ``start = max(max_block_idx // 2 - m // 2, 0), end = min(start + m, max_block_idx + 1)`` - a list of integers corresponds to the list of transformer block ids, e.g., [2] means the second transformer block will be activation checkpointed. [2, 3] means the second and third transformer blocks will be activation checkpointed - a list of mixed integers and strings of first-n, middle-m, last-k, range-i-j An example in yaml config file: fsdp_config: activation_checkpointing: true model: activation_checkpointing_target: { "mptblock": 'first-5', "grouped_query_attention": 'last-35' } """ if not hasattr(module, 'block_idx'): log.debug(f'{module.__class__.__name__} cannot be activation checkpointed. Only transformer block or its submodules are eligible for activation checkpointing.') return False act_ckpt_target = getattr(self.config, 'activation_checkpointing_target', None) act_ckpt_mod_to_blocks = build_act_ckpt_mod_to_blocks(act_ckpt_target, MPTBlock, module.max_block_idx) check_mapping_blocks_overlap(act_ckpt_mod_to_blocks, module.max_block_idx) for k in act_ckpt_mod_to_blocks.keys(): if isinstance(module, k): blocks = act_ckpt_mod_to_blocks[k] return True if blocks == -1 else module.block_idx in blocks return False def prepare_inputs_for_generation(self, input_ids: torch.Tensor, past_key_values: Optional[List[Tuple[torch.Tensor, torch.Tensor]]]=None, inputs_embeds: Optional[torch.Tensor]=None, **kwargs: Any) -> Dict[str, Any]: attention_mask = kwargs['attention_mask'].bool() if attention_mask[:, -1].sum() != attention_mask.shape[0]: raise NotImplementedError('MPT does not support generation with right padding.') if self.transformer.attn_uses_sequence_id and self.training: sequence_id = torch.zeros_like(input_ids[:1]) else: sequence_id = None if past_key_values is not None: input_ids = input_ids[:, -1].unsqueeze(-1) if inputs_embeds is not None and past_key_values is None: model_inputs = {'inputs_embeds': inputs_embeds} else: model_inputs = {'input_ids': input_ids} model_inputs.update({'attention_mask': attention_mask, 'sequence_id': sequence_id, 'past_key_values': past_key_values, 'use_cache': kwargs.get('use_cache', True)}) return model_inputs @staticmethod def _reorder_cache(past_key_values: List[Tuple[torch.Tensor, torch.Tensor]], beam_idx: torch.LongTensor) -> List[Tuple[torch.Tensor, ...]]: """Used by HuggingFace generate when using beam search with kv-caching. See https://github.com/huggingface/transformers/blob/3ec7a47664ebe40c40f4b722f6bb1cd30c3821ec/src/transformers/models/gpt2/modeling_gpt2.py#L1122-L1133 for an example in transformers. """ reordered_past = [] for layer_past in past_key_values: reordered_past += [tuple((past_state.index_select(0, beam_idx) for past_state in layer_past))] return reordered_past