molto commited on
Commit
f165e57
1 Parent(s): b8280d8

Upload 6 files

Browse files
Files changed (6) hide show
  1. brain.ckpt +3 -0
  2. config.json +3 -0
  3. decoder.ckpt +3 -0
  4. encoder.ckpt +3 -0
  5. hyperparams.yaml +184 -0
  6. masknet.ckpt +3 -0
brain.ckpt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:33809a026a2c1febce7b03c8aafaee4ddfc851b2c70f180f8c06bf1017f4df5c
3
+ size 46
config.json ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ {
2
+ "speechbrain_interface": "SepformerSeparation"
3
+ }
decoder.ckpt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:66b7a33fcc0dd2b3e6734b692599abddfcde7d5923c7d8a4ba502262576f1a99
3
+ size 17195
encoder.ckpt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:3925ecdb1b72af72f42225a8306e7d9b2badc1b1be527c713c5bc4fb8bc8aef9
3
+ size 17259
hyperparams.yaml ADDED
@@ -0,0 +1,184 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Generated 2022-06-30 from:
2
+ # /home/cem/Dropbox/speechbrain-1/recipes/WHAMandWHAMR/enhancement/yamls/sepformer-wham-16k.yaml
3
+ # yamllint disable
4
+ # ################################
5
+ # Model: SepFormer for source separation
6
+ # https://arxiv.org/abs/2010.13154
7
+ #
8
+ # Dataset : WHAM!
9
+ # ################################
10
+ # Basic parameters
11
+ # Seed needs to be set at top of yaml, before objects with parameters are made
12
+ #
13
+ seed: 1234
14
+ __set_seed: !apply:torch.manual_seed [1234]
15
+
16
+ # Data params
17
+
18
+ # the data folder for the wham dataset
19
+ # needs to end with wham_original for the wham dataset
20
+ # respecting this convention effects the code functionality
21
+ data_folder: /data2/wham_original/
22
+ task: enhancement
23
+ dereverberate: false
24
+
25
+ # the path for wsj0/si_tr_s/ folder -- only needed if dynamic mixing is used
26
+ # e.g. /yourpath/wsj0-processed/si_tr_s/
27
+ ## you need to convert the original wsj0 to 8k
28
+ # you can do this conversion with ../meta/preprocess_dynamic_mixing.py
29
+ base_folder_dm: /yourpath/wsj0-processed/si_tr_s/
30
+
31
+ experiment_name: sepformer-wham-16k
32
+ output_folder: results/sepformer-wham-16k/1234
33
+ train_log: results/sepformer-wham-16k/1234/train_log.txt
34
+ save_folder: results/sepformer-wham-16k/1234/save
35
+
36
+ # the file names should start with whamr instead of whamorg
37
+ train_data: results/sepformer-wham-16k/1234/save/whamorg_tr.csv
38
+ valid_data: results/sepformer-wham-16k/1234/save/whamorg_cv.csv
39
+ test_data: results/sepformer-wham-16k/1234/save/whamorg_tt.csv
40
+ skip_prep: false
41
+
42
+
43
+ # Experiment params
44
+ auto_mix_prec: true # Set it to True for mixed precision
45
+ test_only: true
46
+ num_spks: 1 # set to 3 for wsj0-3mix
47
+ noprogressbar: false
48
+ save_audio: true # Save estimated sources on disk
49
+ sample_rate: 16000
50
+ n_audio_to_save: 20
51
+
52
+ # Training parameters
53
+ N_epochs: 200
54
+ batch_size: 1
55
+ lr: 0.00015
56
+ clip_grad_norm: 5
57
+ loss_upper_lim: 999999 # this is the upper limit for an acceptable loss
58
+ # if True, the training sequences are cut to a specified length
59
+ limit_training_signal_len: true
60
+ # this is the length of sequences if we choose to limit
61
+ # the signal length of training sequences
62
+ training_signal_len: 64000
63
+
64
+ # Set it to True to dynamically create mixtures at training time
65
+ dynamic_mixing: false
66
+
67
+ # Parameters for data augmentation
68
+ use_wavedrop: false
69
+ use_speedperturb: true
70
+ use_rand_shift: false
71
+ min_shift: -8000
72
+ max_shift: 8000
73
+
74
+ speedperturb: !new:speechbrain.lobes.augment.TimeDomainSpecAugment
75
+ perturb_prob: 1.0
76
+ drop_freq_prob: 0.0
77
+ drop_chunk_prob: 0.0
78
+ sample_rate: 16000
79
+ speeds: [95, 100, 105]
80
+
81
+ wavedrop: !new:speechbrain.lobes.augment.TimeDomainSpecAugment
82
+ perturb_prob: 0.0
83
+ drop_freq_prob: 1.0
84
+ drop_chunk_prob: 1.0
85
+ sample_rate: 16000
86
+
87
+ # loss thresholding -- this thresholds the training loss
88
+ threshold_byloss: true
89
+ threshold: -30
90
+
91
+ # Encoder parameters
92
+ N_encoder_out: 256
93
+ out_channels: 256
94
+ kernel_size: 16
95
+ kernel_stride: 8
96
+
97
+ # Dataloader options
98
+ dataloader_opts:
99
+ batch_size: 1
100
+ num_workers: 3
101
+
102
+ dataloader_opts_valid:
103
+ batch_size: 1
104
+ num_workers: 3
105
+
106
+ # Specifying the network
107
+ Encoder: &id003 !new:speechbrain.lobes.models.dual_path.Encoder
108
+ kernel_size: 16
109
+ out_channels: 256
110
+
111
+
112
+ SBtfintra: &id001 !new:speechbrain.lobes.models.dual_path.SBTransformerBlock
113
+ num_layers: 8
114
+ d_model: 256
115
+ nhead: 8
116
+ d_ffn: 1024
117
+ dropout: 0
118
+ use_positional_encoding: true
119
+ norm_before: true
120
+
121
+ SBtfinter: &id002 !new:speechbrain.lobes.models.dual_path.SBTransformerBlock
122
+ num_layers: 8
123
+ d_model: 256
124
+ nhead: 8
125
+ d_ffn: 1024
126
+ dropout: 0
127
+ use_positional_encoding: true
128
+ norm_before: true
129
+
130
+ MaskNet: &id005 !new:speechbrain.lobes.models.dual_path.Dual_Path_Model
131
+
132
+ num_spks: 1
133
+ in_channels: 256
134
+ out_channels: 256
135
+ num_layers: 2
136
+ K: 250
137
+ intra_model: *id001
138
+ inter_model: *id002
139
+ norm: ln
140
+ linear_layer_after_inter_intra: false
141
+ skip_around_intra: true
142
+
143
+ Decoder: &id004 !new:speechbrain.lobes.models.dual_path.Decoder
144
+ in_channels: 256
145
+ out_channels: 1
146
+ kernel_size: 16
147
+ stride: 8
148
+ bias: false
149
+
150
+ optimizer: !name:torch.optim.Adam
151
+ lr: 0.00015
152
+ weight_decay: 0
153
+
154
+ loss: !name:speechbrain.nnet.losses.get_si_snr_with_pitwrapper
155
+
156
+ lr_scheduler: &id007 !new:speechbrain.nnet.schedulers.ReduceLROnPlateau
157
+
158
+ factor: 0.5
159
+ patience: 2
160
+ dont_halve_until_epoch: 65
161
+
162
+ epoch_counter: &id006 !new:speechbrain.utils.epoch_loop.EpochCounter
163
+ limit: 200
164
+
165
+ modules:
166
+ encoder: *id003
167
+ decoder: *id004
168
+ masknet: *id005
169
+ checkpointer: !new:speechbrain.utils.checkpoints.Checkpointer
170
+ checkpoints_dir: results/sepformer-wham-16k/1234/save
171
+ recoverables:
172
+ encoder: *id003
173
+ decoder: *id004
174
+ masknet: *id005
175
+ counter: *id006
176
+ lr_scheduler: *id007
177
+ train_logger: !new:speechbrain.utils.train_logger.FileTrainLogger
178
+ save_file: results/sepformer-wham-16k/1234/train_log.txt
179
+
180
+ pretrainer: !new:speechbrain.utils.parameter_transfer.Pretrainer
181
+ loadables:
182
+ encoder: !ref <Encoder>
183
+ masknet: !ref <MaskNet>
184
+ decoder: !ref <Decoder>
masknet.ckpt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:97656857d52f91775a989b2b8617ce0014fd75df487c8ba0b9582706642fd307
3
+ size 112839555