import requests from PIL import Image from optimum.amd.ryzenai import RyzenAIModelForImageClassification from transformers import PretrainedConfig, pipeline import timm import torch url = "http://images.cocodataset.org/val2017/000000039769.jpg" image = Image.open(requests.get(url, stream=True).raw) quantized_model_path = "mohitsha/timm-resnet18-onnx-quantized-ryzen" # The path and name of the runtime configuration file. A default version of this file can be # found in the voe-4.0-win_​amd64 folder of the Ryzen AI software installation package under # the name vaip_​config.json vaip_config = ".\\vaip_config.json" model = RyzenAIModelForImageClassification.from_pretrained(quantized_model_path, vaip_config=vaip_config) config = PretrainedConfig.from_pretrained(quantized_model_path) # preprocess config data_config = timm.data.resolve_data_config(pretrained_cfg=config.pretrained_cfg) transforms = timm.data.create_transform(**data_config, is_training=False) output = model(transforms(image).unsqueeze(0)).logits # unsqueeze single image into batch of 1 top5_probabilities, top5_class_indices = torch.topk(torch.softmax(output, dim=1) * 100, k=5) print(top5_class_indices)