Add quantized files
Browse files- config.json +105 -0
- model_quantized.onnx +3 -0
- quantize.py +63 -0
- ryzenai_config.json +14 -0
config.json
ADDED
@@ -0,0 +1,105 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"architecture": "resnet18",
|
3 |
+
"num_classes": 1000,
|
4 |
+
"num_features": 512,
|
5 |
+
"pretrained_cfg": {
|
6 |
+
"_name_or_path": "",
|
7 |
+
"add_cross_attention": false,
|
8 |
+
"architectures": null,
|
9 |
+
"bad_words_ids": null,
|
10 |
+
"begin_suppress_tokens": null,
|
11 |
+
"bos_token_id": null,
|
12 |
+
"chunk_size_feed_forward": 0,
|
13 |
+
"classifier": "fc",
|
14 |
+
"crop_mode": "center",
|
15 |
+
"crop_pct": 0.95,
|
16 |
+
"cross_attention_hidden_size": null,
|
17 |
+
"custom_load": false,
|
18 |
+
"decoder_start_token_id": null,
|
19 |
+
"diversity_penalty": 0.0,
|
20 |
+
"do_sample": false,
|
21 |
+
"early_stopping": false,
|
22 |
+
"encoder_no_repeat_ngram_size": 0,
|
23 |
+
"eos_token_id": null,
|
24 |
+
"exponential_decay_length_penalty": null,
|
25 |
+
"finetuning_task": null,
|
26 |
+
"first_conv": "conv1",
|
27 |
+
"fixed_input_size": false,
|
28 |
+
"forced_bos_token_id": null,
|
29 |
+
"forced_eos_token_id": null,
|
30 |
+
"id2label": {
|
31 |
+
"0": "LABEL_0",
|
32 |
+
"1": "LABEL_1"
|
33 |
+
},
|
34 |
+
"input_size": [
|
35 |
+
3,
|
36 |
+
224,
|
37 |
+
224
|
38 |
+
],
|
39 |
+
"interpolation": "bicubic",
|
40 |
+
"is_decoder": false,
|
41 |
+
"is_encoder_decoder": false,
|
42 |
+
"label2id": {
|
43 |
+
"LABEL_0": 0,
|
44 |
+
"LABEL_1": 1
|
45 |
+
},
|
46 |
+
"length_penalty": 1.0,
|
47 |
+
"max_length": 20,
|
48 |
+
"mean": [
|
49 |
+
0.485,
|
50 |
+
0.456,
|
51 |
+
0.406
|
52 |
+
],
|
53 |
+
"min_length": 0,
|
54 |
+
"model_type": "",
|
55 |
+
"no_repeat_ngram_size": 0,
|
56 |
+
"num_beam_groups": 1,
|
57 |
+
"num_beams": 1,
|
58 |
+
"num_classes": 1000,
|
59 |
+
"num_return_sequences": 1,
|
60 |
+
"origin_url": "https://github.com/huggingface/pytorch-image-models",
|
61 |
+
"output_attentions": false,
|
62 |
+
"output_hidden_states": false,
|
63 |
+
"output_scores": false,
|
64 |
+
"pad_token_id": null,
|
65 |
+
"paper_ids": "arXiv:2110.00476",
|
66 |
+
"pool_size": [
|
67 |
+
7,
|
68 |
+
7
|
69 |
+
],
|
70 |
+
"prefix": null,
|
71 |
+
"problem_type": null,
|
72 |
+
"pruned_heads": {},
|
73 |
+
"remove_invalid_values": false,
|
74 |
+
"repetition_penalty": 1.0,
|
75 |
+
"return_dict": true,
|
76 |
+
"return_dict_in_generate": false,
|
77 |
+
"sep_token_id": null,
|
78 |
+
"std": [
|
79 |
+
0.229,
|
80 |
+
0.224,
|
81 |
+
0.225
|
82 |
+
],
|
83 |
+
"suppress_tokens": null,
|
84 |
+
"tag": "a1_in1k",
|
85 |
+
"task_specific_params": null,
|
86 |
+
"temperature": 1.0,
|
87 |
+
"test_crop_pct": 1.0,
|
88 |
+
"test_input_size": [
|
89 |
+
3,
|
90 |
+
288,
|
91 |
+
288
|
92 |
+
],
|
93 |
+
"tf_legacy_loss": false,
|
94 |
+
"tie_encoder_decoder": false,
|
95 |
+
"tie_word_embeddings": true,
|
96 |
+
"tokenizer_class": null,
|
97 |
+
"top_k": 50,
|
98 |
+
"top_p": 1.0,
|
99 |
+
"torch_dtype": null,
|
100 |
+
"torchscript": false,
|
101 |
+
"typical_p": 1.0,
|
102 |
+
"use_bfloat16": false
|
103 |
+
},
|
104 |
+
"transformers_version": "4.36.2"
|
105 |
+
}
|
model_quantized.onnx
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:0723876d0a12903d84705a98c29851774fc947448b43b730db84f9ae15976415
|
3 |
+
size 11731625
|
quantize.py
ADDED
@@ -0,0 +1,63 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from functools import partial
|
2 |
+
import timm
|
3 |
+
from optimum.amd.ryzenai import (
|
4 |
+
AutoQuantizationConfig,
|
5 |
+
RyzenAIOnnxQuantizer,
|
6 |
+
)
|
7 |
+
from optimum.exporters.onnx import main_export
|
8 |
+
from transformers import PretrainedConfig
|
9 |
+
|
10 |
+
# Define paths for exporting ONNX model and saving quantized model
|
11 |
+
export_dir = "resnet_onnx"
|
12 |
+
quantization_dir = "resnet_onnx_quantized"
|
13 |
+
|
14 |
+
# Specify the model ID from Timm
|
15 |
+
model_id = "timm/resnet18.a1_in1k"
|
16 |
+
|
17 |
+
# Step 1: Export the model to ONNX format using Optimum Exporters
|
18 |
+
main_export(
|
19 |
+
model_name_or_path=model_id,
|
20 |
+
output=export_dir,
|
21 |
+
task="image-classification",
|
22 |
+
opset=13,
|
23 |
+
batch_size=1,
|
24 |
+
no_dynamic_axes=True,
|
25 |
+
)
|
26 |
+
|
27 |
+
# Step 2: Preprocess configuration and data transformations
|
28 |
+
config = PretrainedConfig.from_pretrained(export_dir)
|
29 |
+
data_config = timm.data.resolve_data_config(pretrained_cfg=config.pretrained_cfg)
|
30 |
+
transforms = timm.data.create_transform(**data_config, is_training=False)
|
31 |
+
|
32 |
+
def preprocess_fn(ex, transforms):
|
33 |
+
image = ex["image"]
|
34 |
+
if image.mode == "L":
|
35 |
+
# Convert greyscale to RGB if needed
|
36 |
+
print("WARNING: converting greyscale to RGB")
|
37 |
+
image = image.convert("RGB")
|
38 |
+
pixel_values = transforms(image)
|
39 |
+
return {"pixel_values": pixel_values}
|
40 |
+
|
41 |
+
# Step 3: Initialize the RyzenAIOnnxQuantizer with the exported model
|
42 |
+
quantizer = RyzenAIOnnxQuantizer.from_pretrained(export_dir)
|
43 |
+
|
44 |
+
# Step 4: Load recommended quantization config for model
|
45 |
+
quantization_config = AutoQuantizationConfig.ipu_cnn_config()
|
46 |
+
|
47 |
+
# Step 5: Obtain a calibration dataset for computing quantization parameters
|
48 |
+
train_calibration_dataset = quantizer.get_calibration_dataset(
|
49 |
+
"imagenet-1k",
|
50 |
+
preprocess_function=partial(preprocess_fn, transforms=transforms),
|
51 |
+
num_samples=100,
|
52 |
+
dataset_split="train",
|
53 |
+
preprocess_batch=False,
|
54 |
+
streaming=True,
|
55 |
+
)
|
56 |
+
|
57 |
+
# Step 6: Run the quantizer with the specified configuration and calibration data
|
58 |
+
quantizer.quantize(
|
59 |
+
quantization_config=quantization_config,
|
60 |
+
dataset=train_calibration_dataset,
|
61 |
+
save_dir=quantization_dir
|
62 |
+
)
|
63 |
+
|
ryzenai_config.json
ADDED
@@ -0,0 +1,14 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"opset": null,
|
3 |
+
"optimum_version": "1.17.0.dev0",
|
4 |
+
"quantization": {
|
5 |
+
"activations_dtype": "QUInt8",
|
6 |
+
"activations_symmetric": true,
|
7 |
+
"calibration_method": "MinMSE",
|
8 |
+
"enable_dpu": true,
|
9 |
+
"format": "QDQ",
|
10 |
+
"weights_dtype": "QInt8",
|
11 |
+
"weights_symmetric": true
|
12 |
+
},
|
13 |
+
"transformers_version": "4.36.2"
|
14 |
+
}
|