mlabonne commited on
Commit
32b92e4
1 Parent(s): 5f4e22a

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +8 -4
README.md CHANGED
@@ -4,14 +4,18 @@ datasets:
4
  - timdettmers/openassistant-guanaco
5
  pipeline_tag: text-generation
6
  ---
7
- Model fine-tuned in 4-bit precision using QLoRA on [timdettmers/openassistant-guanaco](https://huggingface.co/datasets/timdettmers/openassistant-guanaco) with weights merged after training.
8
 
9
- Made using this [Google Colab notebook](https://colab.research.google.com/drive/1PEQyJO1-f6j0S_XJ8DV50NkpzasXkrzd?usp=sharing).
 
10
 
11
- It can be easily imported using the `AutoModelForCausalLM` class from `transformers`:
 
 
 
 
12
 
13
  ```
14
  from transformers import AutoModelForCausalLM
15
 
16
- model = AutoModelForCausalLM("mlabonne/llama-2-7b-guanaco")
17
  ```
 
4
  - timdettmers/openassistant-guanaco
5
  pipeline_tag: text-generation
6
  ---
 
7
 
8
+ 📝 [Article](https://towardsdatascience.com/fine-tune-your-own-llama-2-model-in-a-colab-notebook-df9823a04a32) |
9
+ 💻 [Colab](https://colab.research.google.com/drive/1PEQyJO1-f6j0S_XJ8DV50NkpzasXkrzd?usp=sharing)
10
 
11
+ This is a Llama 2-7b model QLoRA fine-tuned (4-bit precision) on the [`mlabonne/guanaco-llama2-1k`](https://huggingface.co/datasets/mlabonne/guanaco-llama2) dataset.
12
+
13
+ It was trained on a Google Colab notebook with a T4 GPU and high RAM. It is mainly designed for educational purposes, not for inference.
14
+
15
+ You can easily import it using the `AutoModelForCausalLM` class from `transformers`:
16
 
17
  ```
18
  from transformers import AutoModelForCausalLM
19
 
20
+ model = AutoModelForCausalLM("mlabonne/llama-2-7b-miniguanaco")
21
  ```