--- language: - en license: other library_name: transformers tags: - orpo - llama 3 - rlhf - sft datasets: - mlabonne/orpo-dpo-mix-40k --- # OrpoLlama-3-8B ![](https://i.imgur.com/ZHwzQvI.png) This is an ORPO fine-tune of [meta-llama/Meta-Llama-3-8B](https://huggingface.co/meta-llama/Meta-Llama-3-8B) on 1k samples of [mlabonne/orpo-dpo-mix-40k](https://huggingface.co/datasets/mlabonne/orpo-dpo-mix-40k) created for [this article](https://huggingface.co/blog/mlabonne/orpo-llama-3). It's a successful fine-tune that follows the ChatML template! **Try the demo**: https://huggingface.co/spaces/mlabonne/OrpoLlama-3-8B ## 🔎 Application This model uses a context window of 8k. It was trained with the ChatML template. ## ⚡ Quantized models Thanks to bartowski, solidrust, and LoneStriker for the quantized models. * **GGUF**: https://huggingface.co/bartowski/OrpoLlama-3-8B-GGUF * **AWQ**: https://huggingface.co/solidrust/OrpoLlama-3-8B-AWQ * **EXL2**: * https://huggingface.co/LoneStriker/OrpoLlama-3-8B-3.0bpw-h6-exl2 * https://huggingface.co/LoneStriker/OrpoLlama-3-8B-4.0bpw-h6-exl2 * https://huggingface.co/LoneStriker/OrpoLlama-3-8B-5.0bpw-h6-exl2 * https://huggingface.co/LoneStriker/OrpoLlama-3-8B-6.0bpw-h6-exl2 * https://huggingface.co/LoneStriker/OrpoLlama-3-8B-8.0bpw-h8-exl2 ## 🏆 Evaluation ### Nous OrpoLlama-4-8B outperforms Llama-3-8B-Instruct on the GPT4All and TruthfulQA datasets. Evaluation performed using [LLM AutoEval](https://github.com/mlabonne/llm-autoeval), see the entire leaderboard [here](https://huggingface.co/spaces/mlabonne/Yet_Another_LLM_Leaderboard). | Model | Average | AGIEval | GPT4All | TruthfulQA | Bigbench | | ------------------------------------------------------------------------------------------------------------------------------------------------------------------------- | --------: | --------: | --------: | ---------: | --------: | | [meta-llama/Meta-Llama-3-8B-Instruct](https://huggingface.co/meta-llama/Meta-Llama-3-8B-Instruct) [📄](https://gist.github.com/mlabonne/8329284d86035e6019edb11eb0933628) | 51.34 | 41.22 | 69.86 | 51.65 | 42.64 | | [**mlabonne/OrpoLlama-3-8B**](https://huggingface.co/mlabonne/OrpoLlama-3-8B) [📄](https://gist.github.com/mlabonne/22896a1ae164859931cc8f4858c97f6f) | **48.63** | **34.17** | **70.59** | **52.39** | **37.36** | | [mlabonne/OrpoLlama-3-8B-1k](https://huggingface.co/mlabonne/OrpoLlama-3-8B) [📄](https://gist.github.com/mlabonne/f41dad371d1781d0434a4672fd6f0b82) | 46.76 | 31.56 | 70.19 | 48.11 | 37.17 | | [meta-llama/Meta-Llama-3-8B](https://huggingface.co/meta-llama/Meta-Llama-3-8B) [📄](https://gist.github.com/mlabonne/616b6245137a9cfc4ea80e4c6e55d847) | 45.42 | 31.1 | 69.95 | 43.91 | 36.7 | `mlabonne/OrpoLlama-3-8B-1k` corresponds to a version of this model trained on 1K samples (you can see the parameters in [this article](https://huggingface.co/blog/mlabonne/orpo-llama-3)). ### Open LLM Leaderboard TBD. ## 📈 Training curves You can find the experiment on W&B at [this address](https://wandb.ai/mlabonne/DPO/runs/vxnmq24z/workspace?nw=nwusermlabonne). ![image/png](https://cdn-uploads.huggingface.co/production/uploads/61b8e2ba285851687028d395/zm71HyZiG96YY1GUtpfHq.png) ## 💻 Usage ```python !pip install -qU transformers accelerate from transformers import AutoTokenizer import transformers import torch model = "mlabonne/OrpoLlama-3-8B" messages = [{"role": "user", "content": "What is a large language model?"}] tokenizer = AutoTokenizer.from_pretrained(model) prompt = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True) pipeline = transformers.pipeline( "text-generation", model=model, torch_dtype=torch.float16, device_map="auto", ) outputs = pipeline(prompt, max_new_tokens=256, do_sample=True, temperature=0.7, top_k=50, top_p=0.95) print(outputs[0]["generated_text"]) ```