DeDeckerThomas
commited on
Commit
•
85a6da2
1
Parent(s):
93edba3
Update README.md
Browse files
README.md
CHANGED
@@ -7,7 +7,7 @@ datasets:
|
|
7 |
tags:
|
8 |
- keyphrase-extraction
|
9 |
metric:
|
10 |
-
-
|
11 |
|
12 |
---
|
13 |
** Work in progress **
|
@@ -18,7 +18,7 @@ Now with the recent innovations in deep learning methods (such as recurrent neur
|
|
18 |
|
19 |
|
20 |
## 📓 Model Description
|
21 |
-
KBIR pre-trained model fine-tuned on the Inspec dataset. KBIR
|
22 |
Keyphrase Boundary Infilling with Replacement (KBIR) which utilizes a multi-task learning setup for optimizing a combined loss of Masked Language Modeling (MLM), Keyphrase Boundary Infilling (KBI) and Keyphrase Replacement Classification (KRC).
|
23 |
Paper: https://arxiv.org/abs/2112.08547
|
24 |
|
@@ -165,6 +165,7 @@ def preprocess_fuction(all_samples_per_split):
|
|
165 |
```
|
166 |
## 📝Evaluation results
|
167 |
|
|
|
168 |
The model achieves the following results on the Inspec test set:
|
169 |
|
170 |
| Dataset | P@5 | R@5 | F1@5 | P@10 | R@10 | F1@10 | P@M | R@M | F1@M |
|
@@ -172,6 +173,7 @@ The model achieves the following results on the Inspec test set:
|
|
172 |
| Inspec Test Set | 0.53 | 0.47 | 0.46 | 0.36 | 0.58 | 0.41 | 0.58 | 0.60 | 0.56 |
|
173 |
|
174 |
For more information on the evaluation process, you can take a look at the keyphrase extraction evaluation notebook.
|
|
|
175 |
### Bibliography
|
176 |
Debanjan Mahata, Navneet Agarwal, Dibya Gautam, Amardeep Kumar, Sagar Dhiman, Anish Acharya, & Rajiv Ratn Shah. (2021). LDkp Dataset [Data set]. Zenodo. https://doi.org/10.5281/zenodo.5501744
|
177 |
|
|
|
7 |
tags:
|
8 |
- keyphrase-extraction
|
9 |
metric:
|
10 |
+
- seqeval
|
11 |
|
12 |
---
|
13 |
** Work in progress **
|
|
|
18 |
|
19 |
|
20 |
## 📓 Model Description
|
21 |
+
This model is a KBIR pre-trained model fine-tuned on the Inspec dataset. KBIR
|
22 |
Keyphrase Boundary Infilling with Replacement (KBIR) which utilizes a multi-task learning setup for optimizing a combined loss of Masked Language Modeling (MLM), Keyphrase Boundary Infilling (KBI) and Keyphrase Replacement Classification (KRC).
|
23 |
Paper: https://arxiv.org/abs/2112.08547
|
24 |
|
|
|
165 |
```
|
166 |
## 📝Evaluation results
|
167 |
|
168 |
+
One of the traditional evaluation methods are the precision, recall and F1-score @k,m where k is the number that stands for the first k predicted keyphrases and m for the average amount of predicted keyphrases.
|
169 |
The model achieves the following results on the Inspec test set:
|
170 |
|
171 |
| Dataset | P@5 | R@5 | F1@5 | P@10 | R@10 | F1@10 | P@M | R@M | F1@M |
|
|
|
173 |
| Inspec Test Set | 0.53 | 0.47 | 0.46 | 0.36 | 0.58 | 0.41 | 0.58 | 0.60 | 0.56 |
|
174 |
|
175 |
For more information on the evaluation process, you can take a look at the keyphrase extraction evaluation notebook.
|
176 |
+
|
177 |
### Bibliography
|
178 |
Debanjan Mahata, Navneet Agarwal, Dibya Gautam, Amardeep Kumar, Sagar Dhiman, Anish Acharya, & Rajiv Ratn Shah. (2021). LDkp Dataset [Data set]. Zenodo. https://doi.org/10.5281/zenodo.5501744
|
179 |
|