--- # For reference on model card metadata, see the spec: https://github.com/huggingface/hub-docs/blob/main/modelcard.md?plain=1 # Doc / guide: https://huggingface.co/docs/hub/model-cards {} --- # mbert_trim_ende 该模型基于bert-base-multilingual-cased,使用[TextPruner](https://github.com/airaria/TextPruner)对词表进行裁剪,保留iwslt14德英数据集,用于测试bert-fused的翻译效果。 并且在iwslt14德英数据集上进行掩码语言模型微调,数据的拼接方式是: de, en, de[sep]en, en[sep]de。 ## Model Details lang:德英 vocab_size: 119547 -> 21443 model_size: 682M -> 392M iwslt14 de_en BLEU: ?--- tags: - generated_from_trainer metrics: - accuracy model-index: - name: mbert_trim_ende results: [] --- # mbert_trim_ende This model is a fine-tuned version of [miugod/mbert_trim_ende](https://huggingface.co/miugod/mbert_trim_ende) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.8260 - Accuracy: 0.8200 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 64 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 1.0 - mixed_precision_training: Native AMP ### Training results ### Framework versions - Transformers 4.29.0.dev0 - Pytorch 1.13.1+cu116 - Datasets 2.11.0 - Tokenizers 0.13.3