File size: 1,718 Bytes
b18f73e 61fd251 b18f73e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 |
---
libray_name: transformers
pipeline_tag: text-generation
license: other
license_name: llama3
license_link: LICENSE
language:
- en
- ko
tags:
- meta
- llama
- llama-3
- akallama
library_name: transformers
---
<a href="https://huggingface.co/collections/mirlab/akallama-66338859b09221f3607fdfcd">
<img src="https://github.com/0110tpwls/project/blob/master/3de500aklm.png?raw=true" width="50%"/>
</a>
# AKALLAMA
We introduce AKALLAMA-70B, korean focused opensource 70b large language model.
It demonstrate considerable improvement in korean fluence, specially compared to base llama 3 model.
To our knowledge, this is one of the first 70b opensource Korean-speaking language models.
### Model Description
This is the model card of a 🤗 transformers model that has been pushed on the Hub.
- **Developed by:** [mirlab](https://mirlab.yonsei.ac.kr/)
- **Language(s) (NLP):** Korean, English
- **License:** llama3
- **Finetuned from model:** [meta-llama/Meta-Llama-3-70B](https://huggingface.co/meta-llama/Meta-Llama-3-70B)
## Evaluation
For local inferencing and evaluation, we highly recommend using the Ollama library.
Check _Customize a model section_ of [Ollama github page](https://github.com/ollama/ollama)
## Training Details
### Training Procedure
We closely followed training procedure of Zephyr ORPO model.
Please check out Huggingface's [alignment handbook](https://github.com/huggingface/alignment-handbook?tab=readme-ov-file) for further details, including the chat template.
### Training Data
Detailed descriptions regarding training data will be announced later.
### Examples
## Thanks to
- A100 클러스터를 제공해주신, 연세대학교 인공지능학과 데이터센터
-
|