File size: 1,718 Bytes
b18f73e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
61fd251
 
b18f73e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
---
libray_name: transformers
pipeline_tag: text-generation
license: other
license_name: llama3
license_link: LICENSE
language:
- en
- ko
tags:
- meta
- llama
- llama-3
- akallama
library_name: transformers
---
<a href="https://huggingface.co/collections/mirlab/akallama-66338859b09221f3607fdfcd">
  <img src="https://github.com/0110tpwls/project/blob/master/3de500aklm.png?raw=true" width="50%"/>
</a>


# AKALLAMA
We introduce AKALLAMA-70B, korean focused opensource 70b large language model. 
It demonstrate considerable improvement in korean fluence, specially compared to base llama 3 model.
To our knowledge, this is one of the first 70b opensource Korean-speaking language models.

### Model Description

This is the model card of a 🤗 transformers model that has been pushed on the Hub.

- **Developed by:** [mirlab](https://mirlab.yonsei.ac.kr/)
- **Language(s) (NLP):** Korean, English
- **License:** llama3
- **Finetuned from model:** [meta-llama/Meta-Llama-3-70B](https://huggingface.co/meta-llama/Meta-Llama-3-70B)

## Evaluation

For local inferencing and evaluation, we highly recommend using the Ollama library. 
Check _Customize a model section_ of [Ollama github page](https://github.com/ollama/ollama)

## Training Details
### Training Procedure

We closely followed training procedure of Zephyr ORPO model.
Please check out Huggingface's [alignment handbook](https://github.com/huggingface/alignment-handbook?tab=readme-ov-file) for further details, including the chat template. 

### Training Data

Detailed descriptions regarding training data will be announced later. 

### Examples

## Thanks to

- A100 클러스터를 제공해주신, 연세대학교 인공지능학과 데이터센터
-