File size: 11,644 Bytes
47e359f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 |
# Adapted from https://huggingface.co/Qwen/Qwen-7B-Chat/blob/main/tokenization_qwen.py
import os
from typing import Collection, List, Optional, Dict, Set, Tuple, Union
from functools import cached_property
import base64
from transformers import PreTrainedTokenizer, AddedToken, AutoConfig
from transformers.models.auto.tokenization_auto import get_tokenizer_config
import tiktoken
"""
This tokenizer is almost identical to tiktoken.get_encoding("cl100k_base")
with a few additional special tokens to support the ChatML format.
TODO(bapatra): Right now, I do not save the special tokens to the vocab file.
Maybe in the future, that would be useful? Can add that support later.
"""
def _load_tiktoken_bpe(tiktoken_bpe_file: str) -> Dict[bytes, int]:
with open(tiktoken_bpe_file, "rb") as f:
contents = f.read()
return {
base64.b64decode(token): int(rank)
for token, rank in (line.split() for line in contents.splitlines() if line)
}
# On the megatron codebase, we pad vocabularies to ensure matrix multiplication is fast.
# this in turn causes some indices to be empty. We account for these empty indices by adding
# dummy tokens to the tokenizer.
EFFECTIVE_PADDED_VOCAB_SIZE = 100352
ACTUAL_VOCAB_SIZE = 100276
DUMMY_TOKENS = {
f"<|dummy_id_{11 + offset}|>": 100276 + offset
for offset in range(1, EFFECTIVE_PADDED_VOCAB_SIZE - ACTUAL_VOCAB_SIZE)
}
SPECIAL_TOKENS = {
# tiktoken.get_encoding("cl100k_base")._special_tokens
'<|endoftext|>': 100257,
'<|fim_prefix|>': 100258,
'<|fim_middle|>': 100259,
'<|fim_suffix|>': 100260,
# Special tokens for post-training
"<|system|>": 100261,
"<|user|>": 100262,
"<|assistant|>": 100263,
# Dummy unused tokens
"<|dummy_id_0|>": 100264,
"<|dummy_id_1|>": 100265,
# Special tokens for post-training continued
"<|end|>": 100266,
# Some dummy tokens, so that tokenization is contiguous and does not cause issues
# Note that the 100256th token of tiktoken.get_encoding("cl100k_base") does not
# actually map to anything. So we use a dummy token here.
"<|dummy_id_2|>": 100256,
# Likewise, tokens from 100267 to 100275 are also unused
"<|dummy_id_3|>": 100267,
"<|dummy_id_4|>": 100268,
"<|dummy_id_5|>": 100269,
"<|dummy_id_6|>": 100270,
"<|dummy_id_7|>": 100271,
"<|dummy_id_8|>": 100272,
"<|dummy_id_9|>": 100273,
"<|dummy_id_10|>": 100274,
"<|dummy_id_11|>": 100275,
# The final end of prompt token
# (unused, but present as a part of tiktoken.get_encoding("cl100k_base")._special_tokens)
'<|endofprompt|>': 100276,
# Dummy tokens to account for padding of the tokenizer
# We pad to ensure tensor cores are used for vocab multiplication
**DUMMY_TOKENS
}
class Phi3SmallTokenizer(PreTrainedTokenizer):
vocab_files_names = {
"vocab_file": "cl100k_base.tiktoken"
}
model_input_names: List[str] = ["input_ids", "attention_mask"]
padding_side = "left"
def __init__(
self,
vocab_file: Optional[str] = None,
errors: str = "replace",
**kwargs
) -> None:
# PreTrainedTokenizer's init calls _add_tokens, which in turn checks
# if the token is present in `self.special_tokens``. Hence instantiating it here.
# The way Qwen gets around this is by checking against SPECIAL_TOKENS
# But I think it's better to check against the objects own `special_tokens`
# in case we eventually want to allow the tokenizer to have special tokens.
self.special_tokens = SPECIAL_TOKENS
super().__init__(**kwargs)
self.errors = errors
base = tiktoken.get_encoding("cl100k_base")
if vocab_file is None:
self.mergeable_ranks: Dict[bytes, int] = base._mergeable_ranks
else:
self.mergeable_ranks = _load_tiktoken_bpe(vocab_file)
self.pat_str = base._pat_str
enc = tiktoken.Encoding(
name="phi3small",
pat_str=self.pat_str,
mergeable_ranks=self.mergeable_ranks,
special_tokens=self.special_tokens,
)
self.tokenizer = enc
self.decoder: Dict[int, bytes] = {
v: k for k, v in self.mergeable_ranks.items()
}
self.decoder.update({v: k for k, v in self.special_tokens.items()})
self.eod_id = self.tokenizer.eot_token
self._eos_token = self._convert_id_to_token(self.eod_id)
# Setting the bos_token to be the same as the eos_token
# Note that this is **not** the correct thing to do, and is done
# just so that some of the downstream libraries do not break.
self._bos_token = self._eos_token
# Assign the special tokens to class variables
self.system_id = self.special_tokens["<|system|>"]
self.user_id = self.special_tokens["<|user|>"]
self.assistant_id = self.special_tokens["<|assistant|>"]
self.end_id = self.special_tokens["<|end|>"]
@cached_property
def dummy_token_indices(self) -> List[int]:
# There are some additional special tokens in the cl100k_base tokenizer
# that we do not use. Hence, we also consider them to be dummy tokens.
additional_tokens = [
"<|fim_prefix|>",
"<|fim_middle|>",
"<|fim_suffix|>",
"<|endofprompt|>"
]
dummy_token_indices = [index for token, index in self.special_tokens.items() if "dummy_id" in token]
dummy_token_indices.extend([self.special_tokens[token] for token in additional_tokens])
return sorted(dummy_token_indices)
def __getstate__(self):
state = self.__dict__.copy()
del state["tokenizer"]
return state
def __setstate__(self, state):
self.__dict__ = state
enc = tiktoken.Encoding(
name="cl100k_im",
pat_str=self.pat_str,
mergeable_ranks=self.mergeable_ranks,
special_tokens=self.special_tokens,
)
self.tokenizer = enc
def __len__(self):
return self.tokenizer.n_vocab
@classmethod
def from_pretrained(
cls,
pretrained_model_name_or_path: Union[str, os.PathLike],
*init_inputs,
**kwargs,
):
cls_kwargs = kwargs
# First try to load from the tokenization config if it exists
tokenization_config = get_tokenizer_config(pretrained_model_name_or_path, **kwargs)
if tokenization_config:
cls_kwargs.update(
dict(
model_max_length=tokenization_config["model_max_length"],
chat_template=tokenization_config.get("chat_template", None)
)
)
else:
config = AutoConfig.from_pretrained(pretrained_model_name_or_path, trust_remote_code=True)
cls_kwargs["model_max_length"] = config.max_position_embeddings
return cls(**cls_kwargs)
def get_vocab(self) -> Dict[Union[str, bytes], int]:
return {**self.mergeable_ranks, **self.special_tokens}
def convert_tokens_to_ids(
self,
tokens: Union[bytes, str, List[Union[bytes, str]]]
) -> Union[int, List[int]]:
ids = []
if isinstance(tokens, (str, bytes)):
if tokens in self.special_tokens:
return self.special_tokens[tokens]
else:
return self.mergeable_ranks.get(tokens)
ids: List[int] = []
for token in tokens:
ids.append(self.convert_tokens_to_ids(token))
return ids
def _add_tokens(
self,
new_tokens: Union[List[str], List[AddedToken]],
special_tokens: bool = False,
) -> int:
if not special_tokens and new_tokens:
raise ValueError("Only special tokens can be added to this tokenizer")
for token in new_tokens:
surface_form = token.content if isinstance(token, AddedToken) else token
if surface_form not in self.special_tokens:
raise ValueError(
"For now, we do not support unknown special tokens\n"
"In the future, if there is a need for this, we can add special tokens to the tokenizer\n"
"starting from rank 100261 - 100263 and then 100266 - 100275.\n"
"And finally, we can re-construct the enc object back\n"
)
return 0
def save_vocabulary(self, save_directory: str, **kwargs) -> Tuple[str]:
file_path = os.path.join(save_directory, "cl100k_base.tiktoken")
with open(file_path, "w") as f:
for token, rank in self.mergeable_ranks.items():
line = base64.b64encode(token).decode("utf-8") + " " + str(rank) + "\n"
f.write(line)
return (file_path,)
def tokenize(
self,
text: str,
allowed_special: Union[Set, str] = "all",
disallowed_special: Union[Collection, str] = (),
**kwargs
) -> List[Union[bytes, str]]:
tokens: List[Union[bytes, str]] = []
for token_id in self.tokenizer.encode(
text, allowed_special=allowed_special, disallowed_special=disallowed_special
):
tokens.append(self.decoder[token_id])
return tokens
def convert_tokens_to_string(self, tokens: List[Union[bytes, str]]) -> str:
"""
Converts a sequence of tokens in a single string.
"""
text = ""
temp = b""
for t in tokens:
if isinstance(t, str):
if temp:
text += temp.decode("utf-8", errors=self.errors)
temp = b""
text += t
elif isinstance(t, bytes):
temp += t
else:
raise TypeError("token should only be of type types or str")
if temp:
text += temp.decode("utf-8", errors=self.errors)
return text
@property
def vocab_size(self):
return self.tokenizer.n_vocab
@property
def eos_token_id(self) -> int:
return self.eod_id
def _convert_id_to_token(self, index: int) -> Union[bytes, str]:
"""Converts an id to a token, special tokens included"""
if index in self.decoder:
return self.decoder[index]
raise ValueError("unknown ids")
def _convert_token_to_id(self, token: Union[bytes, str]) -> int:
"""Converts a token to an id using the vocab, special tokens included"""
if token in self.special_tokens:
return self.special_tokens[token]
if token in self.mergeable_ranks:
return self.mergeable_ranks[token]
raise ValueError("unknown token")
def _tokenize(self, text: str, **kwargs):
"""
Converts a string in a sequence of tokens (string), using the tokenizer. Split in words for word-based
vocabulary or sub-words for sub-word-based vocabularies (BPE/SentencePieces/WordPieces).
Do NOT take care of added tokens.
"""
raise NotImplementedError
def _decode(
self,
token_ids: Union[int, List[int]],
skip_special_tokens: bool = False,
errors: str = None,
**kwargs,
) -> str:
if isinstance(token_ids, int):
token_ids = [token_ids]
if skip_special_tokens:
token_ids = [i for i in token_ids if i < self.eod_id]
return self.tokenizer.decode(token_ids, errors=errors or self.errors)
|