|
import torch |
|
from datasets import load_dataset |
|
from trl import SFTTrainer |
|
from transformers import AutoModelForCausalLM, AutoTokenizer, TrainingArguments |
|
|
|
""" |
|
A simple example on using SFTTrainer and Accelerate to finetune Phi-3 models. For |
|
a more advanced example, please follow HF alignment-handbook/scripts/run_sft.py |
|
|
|
1. Install accelerate: |
|
conda install -c conda-forge accelerate |
|
2. Setup accelerate config: |
|
accelerate config |
|
to simply use all the GPUs available: |
|
python -c "from accelerate.utils import write_basic_config; write_basic_config(mixed_precision='bf16')" |
|
check accelerate config: |
|
accelerate env |
|
3. Run the code: |
|
accelerate launch sample_finetune.py |
|
""" |
|
|
|
|
|
|
|
|
|
args = { |
|
"bf16": True, |
|
"do_eval": False, |
|
"learning_rate": 5.0e-06, |
|
"log_level": "info", |
|
"logging_steps": 20, |
|
"logging_strategy": "steps", |
|
"lr_scheduler_type": "cosine", |
|
"num_train_epochs": 1, |
|
"max_steps": -1, |
|
"output_dir": "./checkpoint_dir", |
|
"overwrite_output_dir": True, |
|
"per_device_eval_batch_size": 4, |
|
"per_device_train_batch_size": 8, |
|
"remove_unused_columns": True, |
|
"save_steps": 100, |
|
"save_total_limit": 1, |
|
"seed": 0, |
|
"gradient_checkpointing": True, |
|
"gradient_checkpointing_kwargs":{"use_reentrant": False}, |
|
"gradient_accumulation_steps": 1, |
|
"warmup_ratio": 0.2, |
|
} |
|
|
|
training_args = TrainingArguments(**args) |
|
|
|
|
|
|
|
|
|
checkpoint_path = "microsoft/Phi-3-mini-4k-instruct" |
|
|
|
model_kwargs = dict( |
|
use_cache=False, |
|
trust_remote_code=True, |
|
attn_implementation="flash_attention_2", |
|
torch_dtype=torch.bfloat16, |
|
device_map="cuda", |
|
) |
|
model = AutoModelForCausalLM.from_pretrained(checkpoint_path, **model_kwargs) |
|
tokenizer = AutoTokenizer.from_pretrained(checkpoint_path) |
|
tokenizer.pad_token = tokenizer.unk_token |
|
tokenizer.pad_token_id = tokenizer.convert_tokens_to_ids(tokenizer.pad_token) |
|
tokenizer.padding_side = 'right' |
|
|
|
|
|
|
|
|
|
def apply_chat_template( |
|
example, |
|
tokenizer, |
|
): |
|
messages = example["messages"] |
|
|
|
if messages[0]["role"] != "system": |
|
messages.insert(0, {"role": "system", "content": ""}) |
|
example["text"] = tokenizer.apply_chat_template( |
|
messages, tokenize=False, add_generation_prompt=False) |
|
return example |
|
|
|
raw_dataset = load_dataset("HuggingFaceH4/ultrachat_200k") |
|
column_names = list(raw_dataset["train_sft"].features) |
|
|
|
processed_dataset = raw_dataset.map( |
|
apply_chat_template, |
|
fn_kwargs={"tokenizer": tokenizer}, |
|
num_proc=12, |
|
remove_columns=column_names, |
|
desc="Applying chat template", |
|
) |
|
train_dataset = processed_dataset["train_sft"] |
|
eval_dataset = processed_dataset["test_sft"] |
|
|
|
|
|
|
|
|
|
trainer = SFTTrainer( |
|
model=model, |
|
args=training_args, |
|
train_dataset=train_dataset, |
|
eval_dataset=eval_dataset, |
|
max_seq_length=2048, |
|
dataset_text_field="text", |
|
tokenizer=tokenizer, |
|
packing=True |
|
) |
|
train_result = trainer.train() |
|
metrics = train_result.metrics |
|
trainer.log_metrics("train", metrics) |
|
trainer.save_metrics("train", metrics) |
|
trainer.save_state() |
|
|
|
|
|
|
|
|
|
tokenizer.padding_side = 'left' |
|
metrics = trainer.evaluate() |
|
metrics["eval_samples"] = len(eval_dataset) |
|
trainer.log_metrics("eval", metrics) |
|
trainer.save_metrics("eval", metrics) |
|
|
|
|
|
|
|
|
|
trainer.save_model(training_args.output_dir) |