leoxiaobin haipingwu commited on
Commit
6bf1792
1 Parent(s): df93020

update_model_init_fp16 (#53)

Browse files

- update model init with float16 (93d5b247d87e5e0afeafe5b49c4a796aa5ba9e7c)
- update model init with float16 (bab1b3cbc340fac15205568422af11476c232442)


Co-authored-by: Haiping Wu <[email protected]>

Files changed (4) hide show
  1. README.md +12 -5
  2. config.json +1 -1
  3. processing_florence2.py +1 -1
  4. sample_inference.ipynb +0 -0
README.md CHANGED
@@ -27,16 +27,20 @@ Resources and Technical Documentation:
27
 
28
  ## How to Get Started with the Model
29
 
30
- Use the code below to get started with the model.
31
 
32
  ```python
33
  import requests
34
 
 
35
  from PIL import Image
36
  from transformers import AutoProcessor, AutoModelForCausalLM
37
 
38
 
39
- model = AutoModelForCausalLM.from_pretrained("microsoft/Florence-2-large", trust_remote_code=True)
 
 
 
40
  processor = AutoProcessor.from_pretrained("microsoft/Florence-2-large", trust_remote_code=True)
41
 
42
  prompt = "<OD>"
@@ -44,7 +48,7 @@ prompt = "<OD>"
44
  url = "https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/transformers/tasks/car.jpg?download=true"
45
  image = Image.open(requests.get(url, stream=True).raw)
46
 
47
- inputs = processor(text=prompt, images=image, return_tensors="pt")
48
 
49
  generated_ids = model.generate(
50
  input_ids=inputs["input_ids"],
@@ -74,11 +78,14 @@ First, let's define a function to run a prompt.
74
  ```python
75
  import requests
76
 
 
77
  from PIL import Image
78
  from transformers import AutoProcessor, AutoModelForCausalLM
79
 
 
 
80
 
81
- model = AutoModelForCausalLM.from_pretrained("microsoft/Florence-2-large", trust_remote_code=True)
82
  processor = AutoProcessor.from_pretrained("microsoft/Florence-2-large", trust_remote_code=True)
83
 
84
  url = "https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/transformers/tasks/car.jpg?download=true"
@@ -89,7 +96,7 @@ def run_example(task_prompt, text_input=None):
89
  prompt = task_prompt
90
  else:
91
  prompt = task_prompt + text_input
92
- inputs = processor(text=prompt, images=image, return_tensors="pt")
93
  generated_ids = model.generate(
94
  input_ids=inputs["input_ids"],
95
  pixel_values=inputs["pixel_values"],
 
27
 
28
  ## How to Get Started with the Model
29
 
30
+ Use the code below to get started with the model. All models are trained with float16.
31
 
32
  ```python
33
  import requests
34
 
35
+ import torch
36
  from PIL import Image
37
  from transformers import AutoProcessor, AutoModelForCausalLM
38
 
39
 
40
+ device = "cuda:0" if torch.cuda.is_available() else "cpu"
41
+ torch_dtype = torch.float16 if torch.cuda.is_available() else torch.float32
42
+
43
+ model = AutoModelForCausalLM.from_pretrained("microsoft/Florence-2-large", torch_dtype=torch_dtype, trust_remote_code=True).to(device)
44
  processor = AutoProcessor.from_pretrained("microsoft/Florence-2-large", trust_remote_code=True)
45
 
46
  prompt = "<OD>"
 
48
  url = "https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/transformers/tasks/car.jpg?download=true"
49
  image = Image.open(requests.get(url, stream=True).raw)
50
 
51
+ inputs = processor(text=prompt, images=image, return_tensors="pt").to(device, torch_dtype)
52
 
53
  generated_ids = model.generate(
54
  input_ids=inputs["input_ids"],
 
78
  ```python
79
  import requests
80
 
81
+ import torch
82
  from PIL import Image
83
  from transformers import AutoProcessor, AutoModelForCausalLM
84
 
85
+ device = "cuda:0" if torch.cuda.is_available() else "cpu"
86
+ torch_dtype = torch.float16 if torch.cuda.is_available() else torch.float32
87
 
88
+ model = AutoModelForCausalLM.from_pretrained("microsoft/Florence-2-large", torch_dtype=torch_dtype, trust_remote_code=True).to(device)
89
  processor = AutoProcessor.from_pretrained("microsoft/Florence-2-large", trust_remote_code=True)
90
 
91
  url = "https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/transformers/tasks/car.jpg?download=true"
 
96
  prompt = task_prompt
97
  else:
98
  prompt = task_prompt + text_input
99
+ inputs = processor(text=prompt, images=image, return_tensors="pt").to(device, torch_dtype)
100
  generated_ids = model.generate(
101
  input_ids=inputs["input_ids"],
102
  pixel_values=inputs["pixel_values"],
config.json CHANGED
@@ -79,7 +79,7 @@
79
  "image_feature_source": ["spatial_avg_pool", "temporal_avg_pool"]
80
  },
81
  "vocab_size": 51289,
82
- "torch_dtype": "float32",
83
  "transformers_version": "4.41.0.dev0",
84
  "is_encoder_decoder": true
85
  }
 
79
  "image_feature_source": ["spatial_avg_pool", "temporal_avg_pool"]
80
  },
81
  "vocab_size": 51289,
82
+ "torch_dtype": "float16",
83
  "transformers_version": "4.41.0.dev0",
84
  "is_encoder_decoder": true
85
  }
processing_florence2.py CHANGED
@@ -324,7 +324,7 @@ class Florence2Processor(ProcessorMixin):
324
  if task_answer_post_processing_type == 'pure_text':
325
  final_answer = task_answer
326
  # remove the special tokens
327
- final_answer = final_answer.replace('<s>', '').replace('</s>', '\n')
328
  elif task_answer_post_processing_type in ['od', 'description_with_bboxes', 'bboxes']:
329
  od_instances = task_answer
330
  bboxes_od = [_od_instance['bbox'] for _od_instance in od_instances]
 
324
  if task_answer_post_processing_type == 'pure_text':
325
  final_answer = task_answer
326
  # remove the special tokens
327
+ final_answer = final_answer.replace('<s>', '').replace('</s>', '')
328
  elif task_answer_post_processing_type in ['od', 'description_with_bboxes', 'bboxes']:
329
  od_instances = task_answer
330
  bboxes_od = [_od_instance['bbox'] for _od_instance in od_instances]
sample_inference.ipynb CHANGED
The diff for this file is too large to render. See raw diff