Update README.md
Browse files
README.md
CHANGED
@@ -2,36 +2,33 @@
|
|
2 |
license: llama2
|
3 |
library_name: peft
|
4 |
tags:
|
5 |
-
-
|
|
|
|
|
|
|
|
|
6 |
base_model: codellama/CodeLlama-13b-hf
|
7 |
model-index:
|
8 |
- name: lora-out
|
9 |
results: []
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
10 |
---
|
11 |
|
12 |
-
|
13 |
-
should probably proofread and complete it, then remove this comment. -->
|
14 |
|
15 |
-
[
|
16 |
-
# lora-out
|
17 |
|
18 |
-
|
19 |
-
It achieves the following results on the evaluation set:
|
20 |
-
- Loss: 0.4263
|
21 |
-
|
22 |
-
## Model description
|
23 |
-
|
24 |
-
More information needed
|
25 |
-
|
26 |
-
## Intended uses & limitations
|
27 |
-
|
28 |
-
More information needed
|
29 |
-
|
30 |
-
## Training and evaluation data
|
31 |
-
|
32 |
-
More information needed
|
33 |
|
34 |
-
|
|
|
|
|
35 |
|
36 |
### Training hyperparameters
|
37 |
|
@@ -53,26 +50,27 @@ The following hyperparameters were used during training:
|
|
53 |
|
54 |
| Training Loss | Epoch | Step | Validation Loss |
|
55 |
|:-------------:|:-----:|:----:|:---------------:|
|
56 |
-
| 0.
|
57 |
-
| 0.
|
58 |
-
| 0.
|
59 |
-
| 0.
|
60 |
-
| 0.
|
61 |
-
| 0.
|
62 |
-
| 0.
|
63 |
-
| 0.
|
64 |
-
| 0.
|
65 |
-
| 0.
|
66 |
-
| 0.
|
67 |
-
| 0.
|
68 |
-
| 0.
|
69 |
-
| 0.
|
70 |
-
| 0.
|
71 |
-
| 0.
|
72 |
-
| 0.
|
73 |
-
| 0.
|
74 |
-
| 0.
|
75 |
-
| 0.
|
|
|
76 |
|
77 |
|
78 |
### Framework versions
|
@@ -81,10 +79,27 @@ The following hyperparameters were used during training:
|
|
81 |
- Pytorch 2.0.1+cu118
|
82 |
- Datasets 2.15.0
|
83 |
- Tokenizers 0.15.0
|
84 |
-
|
|
|
|
|
85 |
|
|
|
86 |
|
87 |
-
|
88 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
89 |
|
90 |
-
- PEFT 0.6.0
|
|
|
2 |
license: llama2
|
3 |
library_name: peft
|
4 |
tags:
|
5 |
+
- typescript
|
6 |
+
- instruction-tuning
|
7 |
+
- code-generation
|
8 |
+
- lora
|
9 |
+
- peft
|
10 |
base_model: codellama/CodeLlama-13b-hf
|
11 |
model-index:
|
12 |
- name: lora-out
|
13 |
results: []
|
14 |
+
datasets:
|
15 |
+
- mhhmm/typescript-instruct-20k
|
16 |
+
language:
|
17 |
+
- en
|
18 |
+
metrics:
|
19 |
+
- code_eval
|
20 |
+
pipeline_tag: text-generation
|
21 |
---
|
22 |
|
23 |
+
## Architecture
|
|
|
24 |
|
25 |
+
![The Architecture](https://github.com/LeVuMinhHuy/brocode/blob/master/.pics/about-the-model.png?raw=true)
|
|
|
26 |
|
27 |
+
## About
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
28 |
|
29 |
+
This model is a fine-tuned version of [codellama/CodeLlama-13b-hf](https://huggingface.co/codellama/CodeLlama-13b-hf).
|
30 |
+
It achieves the following results on the evaluation set:
|
31 |
+
- Loss: 0.4268
|
32 |
|
33 |
### Training hyperparameters
|
34 |
|
|
|
50 |
|
51 |
| Training Loss | Epoch | Step | Validation Loss |
|
52 |
|:-------------:|:-----:|:----:|:---------------:|
|
53 |
+
| 0.7555 | 0.01 | 1 | 0.7062 |
|
54 |
+
| 0.7036 | 0.05 | 7 | 0.6673 |
|
55 |
+
| 0.5422 | 0.1 | 14 | 0.5152 |
|
56 |
+
| 0.5351 | 0.15 | 21 | 0.4866 |
|
57 |
+
| 0.495 | 0.2 | 28 | 0.4688 |
|
58 |
+
| 0.5651 | 0.25 | 35 | 0.4587 |
|
59 |
+
| 0.5146 | 0.3 | 42 | 0.4486 |
|
60 |
+
| 0.4955 | 0.35 | 49 | 0.4469 |
|
61 |
+
| 0.5117 | 0.4 | 56 | 0.4432 |
|
62 |
+
| 0.5245 | 0.45 | 63 | 0.4410 |
|
63 |
+
| 0.5003 | 0.5 | 70 | 0.4371 |
|
64 |
+
| 0.4502 | 0.55 | 77 | 0.4340 |
|
65 |
+
| 0.527 | 0.6 | 84 | 0.4315 |
|
66 |
+
| 0.48 | 0.65 | 91 | 0.4305 |
|
67 |
+
| 0.448 | 0.7 | 98 | 0.4289 |
|
68 |
+
| 0.5427 | 0.75 | 105 | 0.4289 |
|
69 |
+
| 0.4715 | 0.8 | 112 | 0.4279 |
|
70 |
+
| 0.5584 | 0.85 | 119 | 0.4276 |
|
71 |
+
| 0.4936 | 0.9 | 126 | 0.4267 |
|
72 |
+
| 0.4788 | 0.95 | 133 | 0.4268 |
|
73 |
+
| 0.476 | 1.0 | 140 | 0.4268 |
|
74 |
|
75 |
|
76 |
### Framework versions
|
|
|
79 |
- Pytorch 2.0.1+cu118
|
80 |
- Datasets 2.15.0
|
81 |
- Tokenizers 0.15.0
|
82 |
+
- PEFT 0.6.0
|
83 |
+
|
84 |
+
### Evaluation
|
85 |
|
86 |
+
I'm using MultiPL-E benchmark, the same as Code Llmama using in their paper
|
87 |
|
88 |
+
How to reproduce my evaluation? Just run like the offical document of MultiPL-E: https://nuprl.github.io/MultiPL-E/tutorial.html, change the modal name by my model here: `mhhmm/typescript-instruct-20k`
|
89 |
|
90 |
+
This is the code that I ran with Google Colab (using A100 40GB, yes, it requires that much GPU RAM)
|
91 |
+
|
92 |
+
If you even have a stronger GPU, increase the --batch-size, or --completion-limit
|
93 |
+
|
94 |
+
```
|
95 |
+
!pip install --upgrade pip
|
96 |
+
!pip install aiohttp numpy tqdm pytest datasets torch transformers sentencepiece
|
97 |
+
!git clone https://github.com/nuprl/MultiPL-E
|
98 |
+
%cd MultiPL-E
|
99 |
+
!mkdir typescript
|
100 |
+
!python3 automodel.py --name mhhmm/typescript-instruct-20k --root-dataset humaneval --lang ts --temperature 0.2 --batch-size 10 --completion-limit 20 --output-dir-prefix typescript
|
101 |
+
%cd evaluation/src
|
102 |
+
!python3 main.py --dir ../../typescript --output-dir ../../typescript --recursive
|
103 |
+
!python3 pass_k.py ./typescript/*
|
104 |
+
```
|
105 |
|
|