huseinzol05 commited on
Commit
223aa52
1 Parent(s): 6e72ee3

fix readme

Browse files
Files changed (2) hide show
  1. README.md +7 -7
  2. convert-from-malaya.ipynb +0 -7
README.md CHANGED
@@ -2,13 +2,13 @@
2
  language: ms
3
  ---
4
 
5
- # t5-small-bahasa-cased
6
 
7
- Pretrained T5 small language model for Malay.
8
 
9
  ## Pretraining Corpus
10
 
11
- `t5-small-bahasa-cased` model was pretrained on multiple tasks. Below is list of tasks we trained on,
12
 
13
  1. Language masking task on bahasa news, bahasa Wikipedia, bahasa Academia.edu, bahasa parliament and translated The Pile.
14
  2. News title prediction on bahasa news.
@@ -35,8 +35,8 @@ You can use this model by installing `torch` or `tensorflow` and Huggingface lib
35
  ```python
36
  from transformers import T5Tokenizer, T5Model
37
 
38
- model = T5Model.from_pretrained('malay-huggingface/t5-small-bahasa-cased')
39
- tokenizer = T5Tokenizer.from_pretrained('malay-huggingface/t5-small-bahasa-cased')
40
  ```
41
 
42
  ## Example using T5ForConditionalGeneration
@@ -44,8 +44,8 @@ tokenizer = T5Tokenizer.from_pretrained('malay-huggingface/t5-small-bahasa-cased
44
  ```python
45
  from transformers import T5Tokenizer, T5ForConditionalGeneration
46
 
47
- tokenizer = T5Tokenizer.from_pretrained('malay-huggingface/t5-small-bahasa-cased')
48
- model = T5ForConditionalGeneration.from_pretrained('malay-huggingface/t5-small-bahasa-cased')
49
  input_ids = tokenizer.encode('soalan: siapakah perdana menteri malaysia?', return_tensors = 'pt')
50
  outputs = model.generate(input_ids)
51
  print(tokenizer.decode(outputs[0]))
 
2
  language: ms
3
  ---
4
 
5
+ # t5-tiny-bahasa-cased
6
 
7
+ Pretrained T5 tiny language model for Malay.
8
 
9
  ## Pretraining Corpus
10
 
11
+ `t5-tiny-bahasa-cased` model was pretrained on multiple tasks. Below is list of tasks we trained on,
12
 
13
  1. Language masking task on bahasa news, bahasa Wikipedia, bahasa Academia.edu, bahasa parliament and translated The Pile.
14
  2. News title prediction on bahasa news.
 
35
  ```python
36
  from transformers import T5Tokenizer, T5Model
37
 
38
+ model = T5Model.from_pretrained('malay-huggingface/t5-tiny-bahasa-cased')
39
+ tokenizer = T5Tokenizer.from_pretrained('malay-huggingface/t5-tiny-bahasa-cased')
40
  ```
41
 
42
  ## Example using T5ForConditionalGeneration
 
44
  ```python
45
  from transformers import T5Tokenizer, T5ForConditionalGeneration
46
 
47
+ tokenizer = T5Tokenizer.from_pretrained('malay-huggingface/t5-tiny-bahasa-cased')
48
+ model = T5ForConditionalGeneration.from_pretrained('malay-huggingface/t5-tiny-bahasa-cased')
49
  input_ids = tokenizer.encode('soalan: siapakah perdana menteri malaysia?', return_tensors = 'pt')
50
  outputs = model.generate(input_ids)
51
  print(tokenizer.decode(outputs[0]))
convert-from-malaya.ipynb CHANGED
@@ -596,13 +596,6 @@
596
  "source": [
597
  "!rm -rf t5-tiny-v2"
598
  ]
599
- },
600
- {
601
- "cell_type": "code",
602
- "execution_count": null,
603
- "metadata": {},
604
- "outputs": [],
605
- "source": []
606
  }
607
  ],
608
  "metadata": {
 
596
  "source": [
597
  "!rm -rf t5-tiny-v2"
598
  ]
 
 
 
 
 
 
 
599
  }
600
  ],
601
  "metadata": {