--- library_name: transformers tags: [] --- # Malaysian TinyLlama + siglip-large-patch16-384 WanDB https://wandb.ai/huseinzol05/vision-tinyllama?workspace=user-huseinzol05 ## how-to ```python from modeling_vision import MM_LLMs, MM_LLMs_Config from transformers import AutoTokenizer, AutoProcessor from PIL import Image import requests model = MM_LLMs.from_pretrained( 'mesolitica/malaysian-tinyllama-1.1b-siglip-large-384-vision', flash_attention = True, dtype = torch.bfloat16, torch_dtype = torch.bfloat16 ) _ = model.cuda() image_processor = AutoProcessor.from_pretrained('google/siglip-large-patch16-384') tokenizer = AutoTokenizer.from_pretrained('mesolitica/malaysian-tinyllama-1.1b-siglip-large-384-vision') def prepare_dataset(messages, images: List[str] = None): if images is not None: images = [Image.open(f).convert('RGB') for f in images] image_output = image_processor(images=images, return_tensors='pt')['pixel_values'] else: image_output = None prompt = tokenizer.apply_chat_template(messages, tokenize = False) outputs = tokenizer( prompt, return_tensors='pt', return_overflowing_tokens=False, return_length=False) outputs['images'] = image_output outputs['image_index'] = torch.tensor([0] * len(outputs['images'])) outputs['image_starts'] = torch.tensor([tokenizer.convert_tokens_to_ids('')] * len(outputs['images'])) return outputs with open('Persian-cat-breed.jpg', 'wb') as fopen: fopen.write(requests.get('https://cdn.beautifulnara.net/wp-content/uploads/2017/12/10201620/Persian-cat-breed.jpg').content) with open('nasi-goreng-1-23.jpg', 'wb') as fopen: fopen.write(requests.get('https://www.jocooks.com/wp-content/uploads/2023/09/nasi-goreng-1-23.jpg').content) messages = [ {'role': 'user', 'content': ' ini gambar apa'}, ] outputs = prepare_dataset(messages, images = ['Persian-cat-breed.jpg']) outputs['images'] = outputs['images'].type(model.dtype) for k in outputs.keys(): if outputs[k] is not None: outputs[k] = outputs[k].cuda() with torch.no_grad(): model_inputs = model.prepare_inputs_for_generation(**outputs) r = model_inputs.pop('input_ids', None) generate_kwargs = dict( model_inputs, max_new_tokens=300, top_p=0.95, top_k=50, temperature=0.1, do_sample=True, num_beams=1, ) r = model.llm.generate(**generate_kwargs) print(tokenizer.decode(r[0])) ``` ``` Imej itu menunjukkan seekor kucing putih yang comel duduk di atas sofa hitam. ``` ```python messages = [ {'role': 'user', 'content': ' apa kaitan 2 gambar ni'}, ] outputs = prepare_dataset(messages, images = ['Persian-cat-breed.jpg', 'nasi-goreng-1-23.jpg']) outputs['images'] = outputs['images'].type(model.dtype) for k in outputs.keys(): if outputs[k] is not None: outputs[k] = outputs[k].cuda() with torch.no_grad(): model_inputs = model.prepare_inputs_for_generation(**outputs) r = model_inputs.pop('input_ids', None) generate_kwargs = dict( model_inputs, max_new_tokens=300, top_p=0.95, top_k=50, temperature=0.1, do_sample=True, num_beams=1, ) r = model.llm.generate(**generate_kwargs) print(tokenizer.decode(r[0])) ``` ``` Tiada hubungan yang jelas antara gambar 1 (anak kucing putih duduk di atas sofa) dan gambar 2 (foto penutup mangkuk mi telur dengan nasi dan cili). Gambar pertama ialah imej haiwan, manakala gambar kedua ialah imej makanan. Mereka tergolong dalam kategori yang berbeza dan tidak mempunyai hubungan antara satu sama lain. ```