huseinzol05
commited on
Commit
•
f8ff713
1
Parent(s):
5587269
Update README.md
Browse files
README.md
CHANGED
@@ -3,199 +3,113 @@ library_name: transformers
|
|
3 |
tags: []
|
4 |
---
|
5 |
|
6 |
-
#
|
7 |
-
|
8 |
-
|
9 |
-
|
10 |
-
|
11 |
-
|
12 |
-
|
13 |
-
|
14 |
-
|
15 |
-
|
16 |
-
|
17 |
-
|
18 |
-
|
19 |
-
|
20 |
-
|
21 |
-
|
22 |
-
|
23 |
-
|
24 |
-
|
25 |
-
|
26 |
-
|
27 |
-
|
28 |
-
|
29 |
-
|
30 |
-
|
31 |
-
|
32 |
-
|
33 |
-
|
34 |
-
|
35 |
-
|
36 |
-
|
37 |
-
|
38 |
-
|
39 |
-
|
40 |
-
|
41 |
-
|
42 |
-
|
43 |
-
|
44 |
-
[
|
45 |
-
|
46 |
-
|
47 |
-
|
48 |
-
|
49 |
-
|
50 |
-
|
51 |
-
|
52 |
-
|
53 |
-
|
54 |
-
|
55 |
-
|
56 |
-
|
57 |
-
|
58 |
-
|
59 |
-
|
60 |
-
|
61 |
-
|
62 |
-
|
63 |
-
|
64 |
-
|
65 |
-
|
66 |
-
|
67 |
-
|
68 |
-
|
69 |
-
|
70 |
-
|
71 |
-
|
72 |
-
|
73 |
-
|
74 |
-
|
75 |
-
|
76 |
-
|
77 |
-
|
78 |
-
|
79 |
-
|
80 |
-
|
81 |
-
|
82 |
-
|
83 |
-
|
84 |
-
|
85 |
-
|
86 |
-
|
87 |
-
|
88 |
-
|
89 |
-
|
90 |
-
[
|
91 |
-
|
92 |
-
|
93 |
-
|
94 |
-
|
95 |
-
|
96 |
-
|
97 |
-
|
98 |
-
|
99 |
-
|
100 |
-
|
101 |
-
|
102 |
-
|
103 |
-
|
104 |
-
|
105 |
-
|
106 |
-
|
107 |
-
|
108 |
-
|
109 |
-
|
110 |
-
|
111 |
-
|
112 |
-
|
113 |
-
|
114 |
-
|
115 |
-
|
116 |
-
|
117 |
-
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
|
118 |
-
|
119 |
-
[More Information Needed]
|
120 |
-
|
121 |
-
#### Metrics
|
122 |
-
|
123 |
-
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
|
124 |
-
|
125 |
-
[More Information Needed]
|
126 |
-
|
127 |
-
### Results
|
128 |
-
|
129 |
-
[More Information Needed]
|
130 |
-
|
131 |
-
#### Summary
|
132 |
-
|
133 |
-
|
134 |
-
|
135 |
-
## Model Examination [optional]
|
136 |
-
|
137 |
-
<!-- Relevant interpretability work for the model goes here -->
|
138 |
-
|
139 |
-
[More Information Needed]
|
140 |
-
|
141 |
-
## Environmental Impact
|
142 |
-
|
143 |
-
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
|
144 |
-
|
145 |
-
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
|
146 |
-
|
147 |
-
- **Hardware Type:** [More Information Needed]
|
148 |
-
- **Hours used:** [More Information Needed]
|
149 |
-
- **Cloud Provider:** [More Information Needed]
|
150 |
-
- **Compute Region:** [More Information Needed]
|
151 |
-
- **Carbon Emitted:** [More Information Needed]
|
152 |
-
|
153 |
-
## Technical Specifications [optional]
|
154 |
-
|
155 |
-
### Model Architecture and Objective
|
156 |
-
|
157 |
-
[More Information Needed]
|
158 |
-
|
159 |
-
### Compute Infrastructure
|
160 |
-
|
161 |
-
[More Information Needed]
|
162 |
-
|
163 |
-
#### Hardware
|
164 |
-
|
165 |
-
[More Information Needed]
|
166 |
-
|
167 |
-
#### Software
|
168 |
-
|
169 |
-
[More Information Needed]
|
170 |
-
|
171 |
-
## Citation [optional]
|
172 |
-
|
173 |
-
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
|
174 |
-
|
175 |
-
**BibTeX:**
|
176 |
-
|
177 |
-
[More Information Needed]
|
178 |
-
|
179 |
-
**APA:**
|
180 |
-
|
181 |
-
[More Information Needed]
|
182 |
-
|
183 |
-
## Glossary [optional]
|
184 |
-
|
185 |
-
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
|
186 |
-
|
187 |
-
[More Information Needed]
|
188 |
-
|
189 |
-
## More Information [optional]
|
190 |
-
|
191 |
-
[More Information Needed]
|
192 |
-
|
193 |
-
## Model Card Authors [optional]
|
194 |
-
|
195 |
-
[More Information Needed]
|
196 |
-
|
197 |
-
## Model Card Contact
|
198 |
-
|
199 |
-
[More Information Needed]
|
200 |
-
|
201 |
-
|
|
|
3 |
tags: []
|
4 |
---
|
5 |
|
6 |
+
# Malaysian TinyLlama + siglip-large-patch16-384
|
7 |
+
|
8 |
+
WanDB https://wandb.ai/huseinzol05/vision-tinyllama?workspace=user-huseinzol05
|
9 |
+
|
10 |
+
## how-to
|
11 |
+
|
12 |
+
```python
|
13 |
+
from modeling_vision import MM_LLMs, MM_LLMs_Config
|
14 |
+
from transformers import AutoTokenizer, AutoProcessor
|
15 |
+
from PIL import Image
|
16 |
+
import requests
|
17 |
+
|
18 |
+
model = MM_LLMs.from_pretrained(
|
19 |
+
'mesolitica/malaysian-tinyllama-1.1b-siglip-large-384-vision',
|
20 |
+
flash_attention = True,
|
21 |
+
dtype = torch.bfloat16,
|
22 |
+
torch_dtype = torch.bfloat16
|
23 |
+
)
|
24 |
+
_ = model.cuda()
|
25 |
+
|
26 |
+
image_processor = AutoProcessor.from_pretrained('google/siglip-large-patch16-384')
|
27 |
+
tokenizer = AutoTokenizer.from_pretrained('mesolitica/malaysian-tinyllama-1.1b-siglip-large-384-vision')
|
28 |
+
|
29 |
+
def prepare_dataset(messages, images: List[str] = None):
|
30 |
+
if images is not None:
|
31 |
+
images = [Image.open(f).convert('RGB') for f in images]
|
32 |
+
image_output = image_processor(images=images, return_tensors='pt')['pixel_values']
|
33 |
+
else:
|
34 |
+
image_output = None
|
35 |
+
|
36 |
+
prompt = tokenizer.apply_chat_template(messages, tokenize = False)
|
37 |
+
outputs = tokenizer(
|
38 |
+
prompt,
|
39 |
+
return_tensors='pt',
|
40 |
+
return_overflowing_tokens=False,
|
41 |
+
return_length=False)
|
42 |
+
|
43 |
+
outputs['images'] = image_output
|
44 |
+
outputs['image_index'] = torch.tensor([0] * len(outputs['images']))
|
45 |
+
outputs['image_starts'] = torch.tensor([tokenizer.convert_tokens_to_ids('<image>')] * len(outputs['images']))
|
46 |
+
return outputs
|
47 |
+
|
48 |
+
with open('Persian-cat-breed.jpg', 'wb') as fopen:
|
49 |
+
fopen.write(requests.get('https://cdn.beautifulnara.net/wp-content/uploads/2017/12/10201620/Persian-cat-breed.jpg').content)
|
50 |
+
|
51 |
+
with open('nasi-goreng-1-23.jpg', 'wb') as fopen:
|
52 |
+
fopen.write(requests.get('https://www.jocooks.com/wp-content/uploads/2023/09/nasi-goreng-1-23.jpg').content)
|
53 |
+
|
54 |
+
messages = [
|
55 |
+
{'role': 'user', 'content': '<image> </image> ini gambar apa'},
|
56 |
+
]
|
57 |
+
outputs = prepare_dataset(messages, images = ['Persian-cat-breed.jpg'])
|
58 |
+
outputs['images'] = outputs['images'].type(model.dtype)
|
59 |
+
for k in outputs.keys():
|
60 |
+
if outputs[k] is not None:
|
61 |
+
outputs[k] = outputs[k].cuda()
|
62 |
+
|
63 |
+
with torch.no_grad():
|
64 |
+
model_inputs = model.prepare_inputs_for_generation(**outputs)
|
65 |
+
r = model_inputs.pop('input_ids', None)
|
66 |
+
|
67 |
+
generate_kwargs = dict(
|
68 |
+
model_inputs,
|
69 |
+
max_new_tokens=300,
|
70 |
+
top_p=0.95,
|
71 |
+
top_k=50,
|
72 |
+
temperature=0.1,
|
73 |
+
do_sample=True,
|
74 |
+
num_beams=1,
|
75 |
+
)
|
76 |
+
|
77 |
+
r = model.llm.generate(**generate_kwargs)
|
78 |
+
print(tokenizer.decode(r[0]))
|
79 |
+
```
|
80 |
+
|
81 |
+
```
|
82 |
+
<s>Imej itu menunjukkan seekor kucing putih yang comel duduk di atas sofa hitam.</s>
|
83 |
+
```
|
84 |
+
|
85 |
+
```python
|
86 |
+
messages = [
|
87 |
+
{'role': 'user', 'content': '<image> </image> <image> </image> apa kaitan 2 gambar ni'},
|
88 |
+
]
|
89 |
+
outputs = prepare_dataset(messages, images = ['Persian-cat-breed.jpg', 'nasi-goreng-1-23.jpg'])
|
90 |
+
outputs['images'] = outputs['images'].type(model.dtype)
|
91 |
+
for k in outputs.keys():
|
92 |
+
if outputs[k] is not None:
|
93 |
+
outputs[k] = outputs[k].cuda()
|
94 |
+
|
95 |
+
with torch.no_grad():
|
96 |
+
model_inputs = model.prepare_inputs_for_generation(**outputs)
|
97 |
+
r = model_inputs.pop('input_ids', None)
|
98 |
+
|
99 |
+
generate_kwargs = dict(
|
100 |
+
model_inputs,
|
101 |
+
max_new_tokens=300,
|
102 |
+
top_p=0.95,
|
103 |
+
top_k=50,
|
104 |
+
temperature=0.1,
|
105 |
+
do_sample=True,
|
106 |
+
num_beams=1,
|
107 |
+
)
|
108 |
+
|
109 |
+
r = model.llm.generate(**generate_kwargs)
|
110 |
+
print(tokenizer.decode(r[0]))
|
111 |
+
```
|
112 |
+
|
113 |
+
```
|
114 |
+
<s>Tiada hubungan yang jelas antara gambar 1 (anak kucing putih duduk di atas sofa) dan gambar 2 (foto penutup mangkuk mi telur dengan nasi dan cili). Gambar pertama ialah imej haiwan, manakala gambar kedua ialah imej makanan. Mereka tergolong dalam kategori yang berbeza dan tidak mempunyai hubungan antara satu sama lain.</s>
|
115 |
+
```
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|