File size: 9,033 Bytes
56fc297
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
from collections import Counter, defaultdict
import numpy as np
import torch
import torch.nn.functional as F
from torch import Tensor
from torch import nn
from torch.nn import CrossEntropyLoss
import copy
import math
from transformers.activations import gelu
from typing import List, Optional, Tuple, Union
from transformers.modeling_utils import PreTrainedModel, PretrainedConfig
from transformers import CONFIG_MAPPING
from transformers.modeling_outputs import BaseModelOutput
from transformers import GenerationConfig
from transformers import CLIPConfig, CLIPProcessor, CLIPModel, AutoModel
from transformers import WhisperConfig, WhisperPreTrainedModel, WhisperModel
from transformers import AutoConfig, AutoModelForCausalLM, LlamaConfig


def most_frequent_element(tensor):
    flattened_list = tensor.flatten().tolist()
    counter = Counter(flattened_list)
    most_common_element = counter.most_common(1)[0][1]

    return most_common_element


class MM_LLMs_Config(PretrainedConfig):
    model_type = 'mm_llms'
    is_composition = True

    def __init__(
        self,
        image_config=None,
        llm_config=None,
        vision_select_layer=None,
        **kwargs
    ):

        self.image_config = image_config
        self.llm_config = llm_config
        self.vision_select_layer = vision_select_layer

        if isinstance(self.image_config, dict):
            image_config["model_type"] = (
                image_config["model_type"] if "model_type" in image_config else "clip"
            )
            self.image_config = CONFIG_MAPPING[image_config["model_type"]](**image_config)

        if isinstance(self.llm_config, dict):
            llm_config["model_type"] = llm_config["model_type"] if "model_type" in llm_config else "llama"
            self.llm_config = CONFIG_MAPPING[llm_config["model_type"]](**llm_config)

        super().__init__(**kwargs)


class LlavaMultiModalProjector(nn.Module):
    def __init__(self, in_hidden_size, out_hidden_size, conv_kernel=None, conv_stride=3):
        super().__init__()

        self.conv_kernel = conv_kernel

        if conv_kernel:
            self.linear_1 = nn.Conv1d(
                in_hidden_size,
                out_hidden_size,
                kernel_size=conv_kernel,
                stride=conv_stride)
        else:
            self.linear_1 = nn.Linear(
                in_hidden_size,
                out_hidden_size,
                bias=True,
            )
        self.act = gelu
        self.linear_2 = nn.Linear(
            out_hidden_size,
            out_hidden_size,
            bias=True
        )

    def forward(self, image_features):
        hidden_states = self.linear_1(image_features)
        if self.conv_kernel:
            hidden_states = hidden_states.transpose(1, 2).contiguous()
        hidden_states = self.act(hidden_states)
        hidden_states = self.linear_2(hidden_states)
        return hidden_states


class MM_LLMs(PreTrainedModel):
    config_class = MM_LLMs_Config
    supports_gradient_checkpointing = True
    _supports_flash_attn_2 = True

    def __init__(self, config, flash_attention=False, dtype=torch.float32):
        super().__init__(config)
        self.config = config

        self.image_encoder = AutoModel.from_config(config.image_config)

        self.llm = AutoModelForCausalLM.from_config(
            config.llm_config,
            use_flash_attention_2=flash_attention,
            torch_dtype=dtype,
        )

        self.image_projector = LlavaMultiModalProjector(
            config.image_config.vision_config.hidden_size,
            config.llm_config.hidden_size
        )

    def forward(self,
                input_ids: torch.LongTensor = None,
                image_index: torch.LongTensor = None,
                audio_index: torch.LongTensor = None,
                image_starts: torch.int = None,
                image_ends: torch.int = None,
                audio_starts: torch.int = None,
                audio_ends: torch.int = None,
                images: torch.FloatTensor = None,
                audios: torch.FloatTensor = None,
                attention_mask: Optional[torch.Tensor] = None,
                position_ids: Optional[torch.LongTensor] = None,
                past_key_values: Optional[List[torch.FloatTensor]] = None,
                inputs_embeds: Optional[torch.FloatTensor] = None,
                labels: Optional[torch.LongTensor] = None,
                output_attentions: Optional[bool] = None,
                output_hidden_states: Optional[bool] = None,
                use_cache: Optional[bool] = None,
                return_dict: Optional[bool] = None, **kwargs):

        return_dict = return_dict if return_dict is not None else self.config.use_return_dict

        images = images.type(self.image_encoder.dtype) if images is not None else None
        audios = audios.type(self.audio_encoder.dtype) if audios is not None else None

        model_inputs = self.prepare_inputs_for_generation(
            input_ids=input_ids,
            image_index=image_index,
            audio_index=audio_index,
            image_starts=image_starts,
            image_ends=image_ends,
            audio_starts=audio_starts,
            audio_ends=audio_ends,
            images=images,
            audios=audios,
            attention_mask=attention_mask,
            labels=labels)

        outputs = self.llm(
            inputs_embeds=model_inputs['inputs_embeds'],
            attention_mask=model_inputs['attention_mask'],
            labels=model_inputs['labels'],
            return_dict=return_dict)

        return outputs

    def prepare_inputs_for_generation(
            self,
            input_ids,
            past_key_values=None,
            inputs_embeds=None,
            images=None,
            audios=None,
            audio_starts=None,
            audio_ends=None,
            image_starts=None,
            image_ends=None,
            attention_mask=None,
            labels=None,
            audio_index=None,
            image_index=None,
            **kwargs):

        image_features = self.encode_image(
            images) if images is not None else None
        embed_tokens = self.llm.model.embed_tokens
        text_embeddings = embed_tokens(input_ids)
        batch_size = text_embeddings.shape[0]
        seq_len = text_embeddings.shape[1]
        embed_dim = text_embeddings.shape[2]

        max_count_image = most_frequent_element(image_index)
        seq_image = image_features.shape[1]

        new_len = text_embeddings.shape[1] + seq_image * max_count_image
        final_embedding = torch.zeros(
            batch_size, new_len, embed_dim,
            device=text_embeddings.device,
            dtype=text_embeddings.dtype
        )
        final_embedding[:, :seq_len] = text_embeddings
        final_attention_mask = torch.zeros(
            batch_size, new_len,
            device=attention_mask.device,
            dtype=attention_mask.dtype
        )
        final_attention_mask[:, :seq_len] = attention_mask
        if labels is not None:
            final_labels = torch.full(
                (batch_size, new_len),
                -100,
                device=labels.device,
                dtype=labels.dtype
            )
            final_labels[:, :seq_len] = labels
        else:
            final_labels = None

        image_id = int(image_starts[0])

        where_is = torch.where(input_ids == image_id)
        positions = defaultdict(int)
        b_image = 0

        for i in range(len(where_is[0])):
            b, k = where_is[0][i], where_is[1][i]
            int_b = int(b)
            int_k = int(k)
            l = int(input_ids[b, k])
            f = image_features[b_image]
            b_image += 1

            c = torch.cat([final_embedding[b, :int_k + 1 + positions[int_b]],
                          f, text_embeddings[b, k + 1:]])
            final_embedding[b, :len(c)] = c
            final_attention_mask[b, :len(c)] = 1.0

            if labels is not None:
                ignore = torch.tensor([-100] * len(f), device=labels.device)
                c_label = torch.cat(
                    [final_labels[b, :int_k + 1 + positions[int_b]], ignore, labels[b, k + 1:]])
                final_labels[b, :len(c)] = c_label

            positions[int_b] += len(f)

        model_inputs = {
            "input_ids": input_ids,
            "inputs_embeds": final_embedding,
            "use_cache": kwargs.get("use_cache"),
            "attention_mask": final_attention_mask,
            "labels": final_labels,
        }
        return model_inputs

    def encode_image(self, images):
        if self.config.vision_select_layer is not None:
            encoded = self.image_encoder.vision_model(images, output_hidden_states=True)
            encoded = encoded.hidden_states[self.config.vision_select_layer]
        else:
            encoded = self.image_encoder.vision_model(images)[0]
        image_features = self.image_projector(encoded)
        return image_features